ترغب بنشر مسار تعليمي؟ اضغط هنا

The EDGE-CALIFA survey: exploring the role of the molecular gas on the galaxy star formation quenching

64   0   0.0 ( 0 )
 نشر من قبل Dario Colombo Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding how galaxies cease to form stars represents an outstanding challenge for galaxy evolution theories. This process of star formation quenching has been related to various causes, including Active Galactic Nuclei (AGN) activity, the influence of large-scale dynamics, and the environment in which galaxies live. In this paper, we present the first results from a follow-up of CALIFA survey galaxies with observations of molecular gas obtained with the APEX telescope. Together with EDGE survey CARMA observations, we collect $^{12}$CO observations that cover approximately one effective radius in 472 CALIFA galaxies. We observe that the deficit of galaxy star formation with respect to the star formation main sequence (SFMS) increases with the absence of molecular gas and with a reduced efficiency of conversion of molecular gas into stars, in line with results of other integrated studies. However, by dividing the sample into galaxies dominated by star formation and galaxies quenched in their centres (as indicated by the average value of the H$alpha$ equivalent width), we find that this deficit increases sharply once a certain level of gas consumption is reached, indicating that different mechanisms drive separation from the SFMS in star-forming and quenched galaxies. Our results indicate that differences in the amount of molecular gas at a fixed stellar mass are the primary driver for the dispersion in the SFMS, and the most likely explanation for the start of star-formation quenching. However, once a galaxy is quenched, changes in star formation efficiency drive how much a retired galaxy separates in star formation rate from star-forming ones of similar masses. In other words, once a paucity of molecular gas has significantly reduced star formation, changes in the star formation efficiency are what drives a galaxy deeper into the red cloud, retiring it.



قيم البحث

اقرأ أيضاً

We present a multilinear analysis to determine the significant predictors of star formation in galaxies using the combined EDGE-CALIFA sample of galaxies. We analyze 1845 kpc-scale lines of sight across 39 galaxies with molecular line emission measur ements from EDGE combined with optical IFU data drawn from CALIFA. We use the Least Absolute Shrinkage and Selection Operator (LASSO) to identify significant factors in predicting star formation rates. We find that the local star formation rate surface density is increased by higher molecular gas surface densities and stellar surface densities. In contrast, we see lower star formation rates in systems with older stellar populations, higher gas- and stellar-phase metallicities and larger galaxy masses. We also find a significant increase in star formation rate with galactocentric radius normalized by the disk scale length, which suggests additional parameters regulating star formation rate not explored in this study.
Feedback from an active galactic nucleus (AGN) is often implicated as a mechanism that leads to the quenching of galactic star formation. However, AGN-driven quenching is challenging to reconcile with observations that AGN hosts tend to harbour equal (or even excess) amounts of gas compared with inactive galaxies of similar stellar mass. In this paper, we investigate whether AGN feedback happens on sub-galactic (kpc) scales, an effect that might be difficult to detect with global gas measurements. Using kpc-scale measurements of molecular gas (Sigma_H2) and stellar mass (Sigma_*) surface densities taken from the EDGE-CALIFA survey, we show that the gas fractions of central AGN regions are typically a factor of ~2 lower than in star-forming regions. Based on four galaxies with the best spaxel statistics, the difference between AGN and star-forming gas fractions is seen even within a given galaxy, indicating that AGN feedback is able to deplete the molecular gas reservoir in the central few kpc.
We present a comparative study of molecular and ionized gas kinematics in nearby galaxies. These results are based on observations from the EDGE survey, which measured spatially resolved $^{12}$CO(J=1-0) in 126 nearby galaxies. Every galaxy in EDGE h as corresponding resolved ionized gas measurements from CALIFA. Using a sub-sample of 17 rotation dominated, star-forming galaxies where precise molecular gas rotation curves could be extracted, we derive CO and H$alpha$ rotation curves using the same geometric parameters out to $gtrsim$1 $R_e$. We find that $sim$75% of our sample galaxies have smaller ionized gas rotation velocities than the molecular gas in the outer part of the rotation curve. In no case is the molecular gas rotation velocity measurably lower than that of the ionized gas. We suggest that the lower ionized gas rotation velocity can be attributed to a significant contribution from extraplanar diffuse ionized gas in a thick, turbulence supported disk. Using observations of the H$gamma$ transition also available from CALIFA, we measure ionized gas velocity dispersions and find that these galaxies have sufficiently large velocity dispersions to support a thick ionized gas disk. Kinematic simulations show that a thick disk with a vertical rotation velocity gradient can reproduce the observed differences between the CO and H$alpha$ rotation velocities. Observed line ratios tracing diffuse ionized gas are elevated compared to typical values in the midplane of the Milky Way. In galaxies affected by this phenomenon, dynamical masses measured using ionized gas rotation curves will be systematically underestimated.
We present results from the EDGE survey, a spatially resolved CO(1-0) follow-up to CALIFA, an optical Integral Field Unit (IFU) survey of local galaxies. By combining the data products of EDGE and CALIFA, we study the variation in molecular gas deple tion time ($tau_{rm dep}$) on kiloparsec scales in 52 galaxies. We divide each galaxy into two parts: the center, defined as the region within $0.1 R_{25}$, and the disk, defined as the region between $0.1$ and $0.7 R_{25}$. We find that 14 galaxies show a shorter $tau_{rm dep}$ ($sim 1$ Gyr) in the center relative to that in the disk ($tau_{rm dep} sim 2.4$ Gyrs), which means the central region in those galaxies is more efficient at forming stars per unit molecular gas mass. This finding implies that the centers with shorter $tau_{rm dep}$ resemble the intermediate regime between galactic disks and starburst galaxies. Furthermore, the central drop in $tau_{rm dep}$ is correlated with a central increase in the stellar surface density, suggesting that a shorter $tau_{rm dep}$ is associated with molecular gas compression by the stellar gravitational potential. We argue that varying the CO-to-H$_2$ conversion factor only exaggerates the central drop of $tau_{rm dep}$.
We present a study of the integrated properties of the 835 galaxies in the CALIFA survey. To derive the main physical parameters of the galaxies we have fitted their UV-to-IR spectral energy distributions (SED) with sets of theoretical models using C IGALE. We perform a comparison of the integrated galaxy parameters derived from multi-band SED fitting with those obtained from modelling the Integral Field Unit (IFU) spectra and show the clear advantage of using the SED-derived star formation rates (SFR). A detailed analysis of galaxies in the SFR/Mstar plane as a function of their properties reveals that quenching of star formation is caused by a combination of gas deficiency and the inefficiency of the existing gas to form new stars. Exploring the plausible mechanisms that could produce this effect, we find a strong correlation with galaxy morphology and the build-up of central bulge. On the other hand, the presence of AGN and/or a stellar bar, as well as the local environment have only temporal effects on the current star formation, a result also consistent with their model-derived star formation histories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا