ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Aggregation for Adaptive Privacy Preserving Federated Learning in Healthcare

213   0   0.0 ( 0 )
 نشر من قبل Amir Alansary
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning (FL) has enabled training models collaboratively from multiple data owning parties without sharing their data. Given the privacy regulations of patients healthcare data, learning-based systems in healthcare can greatly benefit from privacy-preserving FL approaches. However, typical model aggregation methods in FL are sensitive to local model updates, which may lead to failure in learning a robust and accurate global model. In this work, we implement and evaluate different robust aggregation methods in FL applied to healthcare data. Furthermore, we show that such methods can detect and discard faulty or malicious local clients during training. We run two sets of experiments using two real-world healthcare datasets for training medical diagnosis classification tasks. Each dataset is used to simulate the performance of three different robust FL aggregation strategies when facing different poisoning attacks. The results show that privacy preserving methods can be successfully applied alongside Byzantine-robust aggregation techniques. We observed in particular how using differential privacy (DP) did not significantly impact the final learning convergence of the different aggregation strategies.

قيم البحث

اقرأ أيضاً

Recent attacks on federated learning demonstrate that keeping the training data on clients devices does not provide sufficient privacy, as the model parameters shared by clients can leak information about their training data. A secure aggregation pro tocol enables the server to aggregate clients models in a privacy-preserving manner. However, existing secure aggregation protocols incur high computation/communication costs, especially when the number of model parameters is larger than the number of clients participating in an iteration -- a typical scenario in federated learning. In this paper, we propose a secure aggregation protocol, FastSecAgg, that is efficient in terms of computation and communication, and robust to client dropouts. The main building block of FastSecAgg is a novel multi-secret sharing scheme, FastShare, based on the Fast Fourier Transform (FFT), which may be of independent interest. FastShare is information-theoretically secure, and achieves a trade-off between the number of secrets, privacy threshold, and dropout tolerance. Riding on the capabilities of FastShare, we prove that FastSecAgg is (i) secure against the server colluding with any subset of some constant fraction (e.g. $sim10%$) of the clients in the honest-but-curious setting; and (ii) tolerates dropouts of a random subset of some constant fraction (e.g. $sim10%$) of the clients. FastSecAgg achieves significantly smaller computation cost than existing schemes while achieving the same (orderwise) communication cost. In addition, it guarantees security against adaptive adversaries, which can perform client corruptions dynamically during the execution of the protocol.
In this paper, we address the problem of privacy-preserving training and evaluation of neural networks in an $N$-party, federated learning setting. We propose a novel system, POSEIDON, the first of its kind in the regime of privacy-preserving neural network training. It employs multiparty lattice-based cryptography to preserve the confidentiality of the training data, the model, and the evaluation data, under a passive-adversary model and collusions between up to $N-1$ parties. To efficiently execute the secure backpropagation algorithm for training neural networks, we provide a generic packing approach that enables Single Instruction, Multiple Data (SIMD) operations on encrypted data. We also introduce arbitrary linear transformations within the cryptographic bootstrapping operation, optimizing the costly cryptographic computations over the parties, and we define a constrained optimization problem for choosing the cryptographic parameters. Our experimental results show that POSEIDON achieves accuracy similar to centralized or decentralized non-private approaches and that its computation and communication overhead scales linearly with the number of parties. POSEIDON trains a 3-layer neural network on the MNIST dataset with 784 features and 60K samples distributed among 10 parties in less than 2 hours.
Federated learning has emerged as a promising approach for collaborative and privacy-preserving learning. Participants in a federated learning process cooperatively train a model by exchanging model parameters instead of the actual training data, whi ch they might want to keep private. However, parameter interaction and the resulting model still might disclose information about the training data used. To address these privacy concerns, several approaches have been proposed based on differential privacy and secure multiparty computation (SMC), among others. They often result in large communication overhead and slow training time. In this paper, we propose HybridAlpha, an approach for privacy-preserving federated learning employing an SMC protocol based on functional encryption. This protocol is simple, efficient and resilient to participants dropping out. We evaluate our approach regarding the training time and data volume exchanged using a federated learning process to train a CNN on the MNIST data set. Evaluation against existing crypto-based SMC solutions shows that HybridAlpha can reduce the training time by 68% and data transfer volume by 92% on average while providing the same model performance and privacy guarantees as the existing solutions.
Federated learning (FL) is an emerging paradigm that enables multiple organizations to jointly train a model without revealing their private data to each other. This paper studies {it vertical} federated learning, which tackles the scenarios where (i ) collaborating organizations own data of the same set of users but with disjoint features, and (ii) only one organization holds the labels. We propose Pivot, a novel solution for privacy preserving vertical decision tree training and prediction, ensuring that no intermediate information is disclosed other than those the clients have agreed to release (i.e., the final tree model and the prediction output). Pivot does not rely on any trusted third party and provides protection against a semi-honest adversary that may compromise $m-1$ out of $m$ clients. We further identify two privacy leakages when the trained decision tree model is released in plaintext and propose an enhanced protocol to mitigate them. The proposed solution can also be extended to tree ensemble models, e.g., random forest (RF) and gradient boosting decision tree (GBDT) by treating single decision trees as building blocks. Theoretical and experimental analysis suggest that Pivot is efficient for the privacy achieved.
We present a robust aggregation approach to make federated learning robust to settings when a fraction of the devices may be sending corrupted updates to the server. The proposed approach relies on a robust secure aggregation oracle based on the geom etric median, which returns a robust aggregate using a constant number of calls to a regular non-robust secure average oracle. The robust aggregation oracle is privacy-preserving, similar to the secure average oracle it builds upon. We provide experimental results of the proposed approach with linear models and deep networks for two tasks in computer vision and natural language processing. The robust aggregation approach is agnostic to the level of corruption; it outperforms the classical aggregation approach in terms of robustness when the level of corruption is high, while being competitive in the regime of low corruption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا