ﻻ يوجد ملخص باللغة العربية
The Pencil Code is a highly modular physics-oriented simulation code that can be adapted to a wide range of applications. It is primarily designed to solve partial differential equations (PDEs) of compressible hydrodynamics and has lots of add-ons ranging from astrophysical magnetohydrodynamics (MHD) to meteorological cloud microphysics and engineering applications in combustion. Nevertheless, the framework is general and can also be applied to situations not related to hydrodynamics or even PDEs, for example when just the message passing interface or input/output strategies of the code are to be used. The code can also evolve Lagrangian (inertial and noninertial) particles, their coagulation and condensation, as well as their interaction with the fluid.
This paper describes the design and implementation of our new multi-group, multi-dimensional radiation hydrodynamics (RHD) code Fornax and provides a suite of code tests to validate its application in a wide range of physical regimes. Instead of focu
Context: Stellar clusters are benchmarks for theories of star formation and evolution. The high precision parallax data of the Gaia mission allows significant improvements in the distance determination to stellar clusters and its stars. In order to h
Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated co
We provide a detailed description of the Chimera code, a code developed to model core collapse supernovae in multiple spatial dimensions. The core collapse supernova explosion mechanism remains the subject of intense research. Progress to date demons
We present Phantom, a fast, parallel, modular and low-memory smoothed particle hydrodynamics and magnetohydrodynamics code developed over the last decade for astrophysical applications in three dimensions. The code has been developed with a focus on