ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-supervised pre-training and contrastive representation learning for multiple-choice video QA

84   0   0.0 ( 0 )
 نشر من قبل Seonhoon Kim
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Video Question Answering (Video QA) requires fine-grained understanding of both video and language modalities to answer the given questions. In this paper, we propose novel training schemes for multiple-choice video question answering with a self-supervised pre-training stage and a supervised contrastive learning in the main stage as an auxiliary learning. In the self-supervised pre-training stage, we transform the original problem format of predicting the correct answer into the one that predicts the relevant question to provide a model with broader contextual inputs without any further dataset or annotation. For contrastive learning in the main stage, we add a masking noise to the input corresponding to the ground-truth answer, and consider the original input of the ground-truth answer as a positive sample, while treating the rest as negative samples. By mapping the positive sample closer to the masked input, we show that the model performance is improved. We further employ locally aligned attention to focus more effectively on the video frames that are particularly relevant to the given corresponding subtitle sentences. We evaluate our proposed model on highly competitive benchmark datasets related to multiple-choice video QA: TVQA, TVQA+, and DramaQA. Experimental results show that our model achieves state-of-the-art performance on all datasets. We also validate our approaches through further analyses.



قيم البحث

اقرأ أيضاً

In medical imaging, manual annotations can be expensive to acquire and sometimes infeasible to access, making conventional deep learning-based models difficult to scale. As a result, it would be beneficial if useful representations could be derived f rom raw data without the need for manual annotations. In this paper, we propose to address the problem of self-supervised representation learning with multi-modal ultrasound video-speech raw data. For this case, we assume that there is a high correlation between the ultrasound video and the corresponding narrative speech audio of the sonographer. In order to learn meaningful representations, the model needs to identify such correlation and at the same time understand the underlying anatomical features. We designed a framework to model the correspondence between video and audio without any kind of human annotations. Within this framework, we introduce cross-modal contrastive learning and an affinity-aware self-paced learning scheme to enhance correlation modelling. Experimental evaluations on multi-modal fetal ultrasound video and audio show that the proposed approach is able to learn strong representations and transfers well to downstream tasks of standard plane detection and eye-gaze prediction.
Spoken question answering (SQA) requires fine-grained understanding of both spoken documents and questions for the optimal answer prediction. In this paper, we propose novel training schemes for spoken question answering with a self-supervised traini ng stage and a contrastive representation learning stage. In the self-supervised stage, we propose three auxiliary self-supervised tasks, including utterance restoration, utterance insertion, and question discrimination, and jointly train the model to capture consistency and coherence among speech documents without any additional data or annotations. We then propose to learn noise-invariant utterance representations in a contrastive objective by adopting multiple augmentation strategies, including span deletion and span substitution. Besides, we design a Temporal-Alignment attention to semantically align the speech-text clues in the learned common space and benefit the SQA tasks. By this means, the training schemes can more effectively guide the generation model to predict more proper answers. Experimental results show that our model achieves state-of-the-art results on three SQA benchmarks.
Recent advances in deep learning have achieved promising performance for medical image analysis, while in most cases ground-truth annotations from human experts are necessary to train the deep model. In practice, such annotations are expensive to col lect and can be scarce for medical imaging applications. Therefore, there is significant interest in learning representations from unlabelled raw data. In this paper, we propose a self-supervised learning approach to learn meaningful and transferable representations from medical imaging video without any type of human annotation. We assume that in order to learn such a representation, the model should identify anatomical structures from the unlabelled data. Therefore we force the model to address anatomy-aware tasks with free supervision from the data itself. Specifically, the model is designed to correct the order of a reshuffled video clip and at the same time predict the geometric transformation applied to the video clip. Experiments on fetal ultrasound video show that the proposed approach can effectively learn meaningful and strong representations, which transfer well to downstream tasks like standard plane detection and saliency prediction.
181 - Xin Wang , Yasheng Wang , Fei Mi 2021
Code representation learning, which aims to encode the semantics of source code into distributed vectors, plays an important role in recent deep-learning-based models for code intelligence. Recently, many pre-trained language models for source code ( e.g., CuBERT and CodeBERT) have been proposed to model the context of code and serve as a basis for downstream code intelligence tasks such as code search, code clone detection, and program translation. Current approaches typically consider the source code as a plain sequence of tokens, or inject the structure information (e.g., AST and data-flow) into the sequential model pre-training. To further explore the properties of programming languages, this paper proposes SynCoBERT, a syntax-guided multi-modal contrastive pre-training approach for better code representations. Specially, we design two novel pre-training objectives originating from the symbolic and syntactic properties of source code, i.e., Identifier Prediction (IP) and AST Edge Prediction (TEP), which are designed to predict identifiers, and edges between two nodes of AST, respectively. Meanwhile, to exploit the complementary information in semantically equivalent modalities (i.e., code, comment, AST) of the code, we propose a multi-modal contrastive learning strategy to maximize the mutual information among different modalities. Extensive experiments on four downstream tasks related to code intelligence show that SynCoBERT advances the state-of-the-art with the same pre-training corpus and model size.
In the past few years, we have witnessed remarkable breakthroughs in self-supervised representation learning. Despite the success and adoption of representations learned through this paradigm, much is yet to be understood about how different training methods and datasets influence performance on downstream tasks. In this paper, we analyze contrastive approaches as one of the most successful and popular variants of self-supervised representation learning. We perform this analysis from the perspective of the training algorithms, pre-training datasets and end tasks. We examine over 700 training experiments including 30 encoders, 4 pre-training datasets and 20 diverse downstream tasks. Our experiments address various questions regarding the performance of self-supervised models compared to their supervised counterparts, current benchmarks used for evaluation, and the effect of the pre-training data on end task performance. Our Visual Representation Benchmark (ViRB) is available at: https://github.com/allenai/virb.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا