ترغب بنشر مسار تعليمي؟ اضغط هنا

Light-matter interaction in open cavities with dielectric stacks

112   0   0.0 ( 0 )
 نشر من قبل Juan-Rafael Alvarez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate the exact dipole coupling strength between a single emitter and the radiation field within an optical cavity, taking into account the effects of multilayer dielectric mirrors. Our model allows one to freely vary the resonance frequency of the cavity, the frequency of light or atomic transition addressing it and the design wavelength of the dielectric mirror. The coupling strength is derived for an open system with unbound frequency modes. For very short cavities, the effective length used to determine their mode volume and the lengths defining their resonances are different, and also found to diverge appreciably from their geometric length, with the radiation field being strongest within the dielectric mirror itself. Only for cavities much longer than their resonant wavelength does the mode volume asymptotically approach that normally assumed from their geometric length.

قيم البحث

اقرأ أيضاً

The concept of parity describes the inversion symmetry of a system and is of fundamental relevance in the standard model, quantum information processing, and field theory. In quantum electrodynamics, parity is conserved and large field gradients are required to engineer the parity of the light-matter interaction operator. In this work, we engineer a potassium-like artificial atom represented by a specifically designed superconducting flux qubit. We control the wave function parity of the artificial atom with an effective orbital momentum provided by a resonator. By irradiating the artificial atom with spatially shaped microwave fields, we select the interaction parity in situ. In this way, we observe dipole and quadrupole selection rules for single state transitions and induce transparency via longitudinal coupling. Our work advances the design of tunable artificial multilevel atoms to a new level, which is particularly promising with respect to quantum chemistry simulations with near-term superconducting circuits.
Magnetic interaction between photons and dipoles is essential in electronics, sensing, spectroscopy, and quantum computing. However, its weak strength often requires resonators to confine and store the photons. Here, we present mode engineering techn iques to create resonators with ultrasmall mode volume and ultrahigh quality factor. In particular, we show that it is possible to achieve an arbitrarily small mode volume only limited by materials or fabrication with minimal Q degradation. We compare mode-engineered cavities in a trade-off space and show that the magnetic interaction can be strengthened more than $10^{16}$ times compared to free space. These methods enable new applications from high-cooperativity microwave-spin coupling in quantum computing or compact electron paramagnetic resonance (EPR) sensors to fundamental science such as dark matter searches.
Cavity-QED systems have recently reached a regime where the light-matter interaction strength amounts to a non-negligible fraction of the resonance frequencies of the bare subsystems. In this regime, it is known that the usual normal-order correlatio n functions for the cavity-photon operators fail to describe both the rate and the statistics of emitted photons. Following Glaubers original approach, we derive a simple and general quantum theory of photodetection, valid for arbitrary light-matter interaction strengths. Our derivation uses Fermis golden rule, together with an expansion of system operators in the eigenbasis of the interacting light-matter system, to arrive at the correct photodetection probabilities. We consider both narrow- and wide-band photodetectors. Our description is also valid for point-like detectors placed inside the optical cavity. As an application, we propose a gedanken experiment confirming the virtual nature of the bare excitations that enrich the ground state of the quantum Rabi model.
We address the quantum estimation of the diamagnetic, or $A^2$, term in an effective model of light-matter interaction featuring two coupled oscillators. First, we calculate the quantum Fisher information of the diamagnetic parameter in the interacti ng ground state. Then, we find that typical measurements on the transverse radiation field, such as homodyne detection or photon counting, permit to estimate the diamagnetic coupling constant with near-optimal efficiency in a wide range of model parameters. Should the model admit a critical point, we also find that both measurements would become asymptotically optimal in its vicinity. Finally, we discuss binary discrimination strategies between the two most debated hypotheses involving the diamagnetic term in circuit QED. While we adopt a terminology appropriate to the Coulomb gauge, our results are also relevant for the electric dipole gauge. In that case, our calculations would describe the estimation of the so-called transverse $P^2$ term. The derived metrological benchmarks are general and relevant to any implementation of the model, cavity and circuit QED being two relevant examples.
We solve the low-energy part of the spectrum of a model that describes a cavity mode strongly coupled to an exciton, and both modes coupled to continua of bosonic excitations which give rise to homogeneous broadenig. The spectral density of the cavit y modes in the low-energy manifold agrees with measured photoluminiscense spectra. We suggest fitting these spectra with a sum of two asymmetric Lorentzians.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا