ﻻ يوجد ملخص باللغة العربية
In this paper we address the problem of determining whether the eigenspaces of a class of weighted Laplacians on Cayley graphs are generically irreducible or not. This work is divided into two parts. In the first part, we express the weighted Laplacian on Cayley graphs as the divergence of a gradient in an analogous way to the approach adopted in Riemannian geometry. In the second part, we analyze its spectrum on left-invariant Cayley graphs endowed with an invariant metric in both directed and undirected cases. We give some criteria for a given eigenspace being generically irreducible. Finally, we introduce an additional operator which is comparable to the Laplacian, and we verify that the same criteria hold.
This paper is devoted to semiclassical estimates of the eigenvalues of the Pauli operator on a bounded open set whose boundary carries Dirichlet conditions. Assuming that the magnetic field is positive and a few generic conditions, we establish the s
In this paper, we study eigenvalues and eigenfunctions of $p$-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniquen
The spectrum of the non-self-adjoint Zakharov-Shabat operator with periodic potentials is studied, and its explicit dependence on the presence of a semiclassical parameter in the problem is also considered. Several new results are obtained. In partic
We give sufficient conditions for the presence of the absolutely continuous spectrum of a Schrodinger operator on a regular rooted tree without loops (also called regular Bethe lattice or Cayley tree).
For any multi-graph $G$ with edge weights and vertex potential, and its universal covering tree $mathcal{T}$, we completely characterize the point spectrum of operators $A_{mathcal{T}}$ on $mathcal{T}$ arising as pull-backs of local, self-adjoint ope