ترغب بنشر مسار تعليمي؟ اضغط هنا

Creation and Validation of a Chest X-Ray Dataset with Eye-tracking and Report Dictation for AI Development

230   0   0.0 ( 0 )
 نشر من قبل Mehdi Moradi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We developed a rich dataset of Chest X-Ray (CXR) images to assist investigators in artificial intelligence. The data were collected using an eye tracking system while a radiologist reviewed and reported on 1,083 CXR images. The dataset contains the following aligned data: CXR image, transcribed radiology report text, radiologists dictation audio and eye gaze coordinates data. We hope this dataset can contribute to various areas of research particularly towards explainable and multimodal deep learning / machine learning methods. Furthermore, investigators in disease classification and localization, automated radiology report generation, and human-machine interaction can benefit from these data. We report deep learning experiments that utilize the attention maps produced by eye gaze dataset to show the potential utility of this data.



قيم البحث

اقرأ أيضاً

Recently, chest X-ray report generation, which aims to automatically generate descriptions of given chest X-ray images, has received growing research interests. The key challenge of chest X-ray report generation is to accurately capture and describe the abnormal regions. In most cases, the normal regions dominate the entire chest X-ray image, and the corresponding descriptions of these normal regions dominate the final report. Due to such data bias, learning-based models may fail to attend to abnormal regions. In this work, to effectively capture and describe abnormal regions, we propose the Contrastive Attention (CA) model. Instead of solely focusing on the current input image, the CA model compares the current input image with normal images to distill the contrastive information. The acquired contrastive information can better represent the visual features of abnormal regions. According to the experiments on the public IU-X-ray and MIMIC-CXR datasets, incorporating our CA into several existing models can boost their performance across most metrics. In addition, according to the analysis, the CA model can help existing models better attend to the abnormal regions and provide more accurate descriptions which are crucial for an interpretable diagnosis. Specifically, we achieve the state-of-the-art results on the two public datasets.
Chest X-rays are the most common diagnostic exams in emergency rooms and hospitals. There has been a surge of work on automatic interpretation of chest X-rays using deep learning approaches after the availability of large open source chest X-ray data set from NIH. However, the labels are not sufficiently rich and descriptive for training classification tools. Further, it does not adequately address the findings seen in Chest X-rays taken in anterior-posterior (AP) view which also depict the placement of devices such as central vascular lines and tubes. In this paper, we present a new chest X-ray benchmark database of 73 rich sentence-level descriptors of findings seen in AP chest X-rays. We describe our method of obtaining these findings through a semi-automated ground truth generation process from crowdsourcing of clinician annotations. We also present results of building classifiers for these findings that show that such higher granularity labels can also be learned through the framework of deep learning classifiers.
Machine learning has been an emerging tool for various aspects of infectious diseases including tuberculosis surveillance and detection. However, WHO provided no recommendations on using computer-aided tuberculosis detection software because of the s mall number of studies, methodological limitations, and limited generalizability of the findings. To quantify the generalizability of the machine-learning model, we developed a Deep Convolutional Neural Network (DCNN) model using a TB-specific CXR dataset of one population (National Library of Medicine Shenzhen No.3 Hospital) and tested it with non-TB-specific CXR dataset of another population (National Institute of Health Clinical Centers). The findings suggested that a supervised deep learning model developed by using the training dataset from one population may not have the same diagnostic performance in another population. Technical specification of CXR images, disease severity distribution, overfitting, and overdiagnosis should be examined before implementation in other settings.
Deep neural networks for video-based eye tracking have demonstrated resilience to noisy environments, stray reflections, and low resolution. However, to train these networks, a large number of manually annotated images are required. To alleviate the cumbersome process of manual labeling, computer graphics rendering is employed to automatically generate a large corpus of annotated eye images under various conditions. In this work, we introduce a synthetic eye image generation platform that improves upon previous work by adding features such as an active deformable iris, an aspherical cornea, retinal retro-reflection, gaze-coordinated eye-lid deformations, and blinks. To demonstrate the utility of our platform, we render images reflecting the represented gaze distributions inherent in two publicly available datasets, NVGaze and OpenEDS. We also report on the performance of two semantic segmentation architectures (SegNet and RITnet) trained on rendered images and tested on the original datasets.
Despite the progress in automatic detection of radiologic findings from chest X-ray (CXR) images in recent years, a quantitative evaluation of the explainability of these models is hampered by the lack of locally labeled datasets for different findin gs. With the exception of a few expert-labeled small-scale datasets for specific findings, such as pneumonia and pneumothorax, most of the CXR deep learning models to date are trained on global weak labels extracted from text reports, or trained via a joint image and unstructured text learning strategy. Inspired by the Visual Genome effort in the computer vision community, we constructed the first Chest ImaGenome dataset with a scene graph data structure to describe $242,072$ images. Local annotations are automatically produced using a joint rule-based natural language processing (NLP) and atlas-based bounding box detection pipeline. Through a radiologist constructed CXR ontology, the annotations for each CXR are connected as an anatomy-centered scene graph, useful for image-level reasoning and multimodal fusion applications. Overall, we provide: i) $1,256$ combinations of relation annotations between $29$ CXR anatomical locations (objects with bounding box coordinates) and their attributes, structured as a scene graph per image, ii) over $670,000$ localized comparison relations (for improved, worsened, or no change) between the anatomical locations across sequential exams, as well as ii) a manually annotated gold standard scene graph dataset from $500$ unique patients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا