ترغب بنشر مسار تعليمي؟ اضغط هنا

An Analysis of Soft X-ray Structures at Kiloparsec Distances from the Active Nucleus of Centaurus A Galaxy

41   0   0.0 ( 0 )
 نشر من قبل Dominika Kr\\'ol
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we re-analyze the archival {it Chandra} data for the central parts of the Centaurus,A radio galaxy, aiming for a systematic investigation of the X-ray emission associated with the inner radio lobes in the system, and their immediate surroundings. In particular, we focus on four distinct features characterized by the soft excess with respect to the adjacent fields. Those include the two regions located at kpc distances from the nucleus to the West and East, the extended bow-shock structure to the South, and a fragment of a thin arc North from the center. The selected North, West, and South features coincide with the edges of the radio lobes, while the East structure is seemingly displaced from the radio-emitting plasma. Our X-ray spectral analysis reveals (i) a power-law emission component with photon index $Gamma sim 2$ in the North, East, and South regions, and (ii) a dense (number density $sim 0.3$,cm$^{-3}$) and relatively cold (temperature $sim 0.2$,keV) gas in the East and West regions. The power-law emission is consistent with the synchrotron continuum generated at the edges of the radio structure, and implies that the efficiency of the electron acceleration at the terminal bow-shock does not vary dramatically over the inner lobes extension. The presence of gaseous condensations, on the other hand, could possibly be understood in terms of a massive outflow from the central regions of the galaxy.


قيم البحث

اقرأ أيضاً

263 - J. R. Song 2020
RX J1301.9+2747 is an ultrasoft active galactic nucleus (AGN) with unusual X-ray variability that is characterized by a long quiescent state and a short-lived flare state. The X-ray flares are found to recur quasi-periodically on a timescale of 13-20 ks. Here, we report the analysis of the light curve in the quiescent state from two XMM observations spanning 18.5 years, along with the discovery of a possible quasi-periodic X-ray oscillation (QPO) with a period of ~1500s. The QPO is detected at the same frequency in the two independent observations, with a combined significance of >99.89%. The QPO is in agreement with the relation between frequency and black hole mass (M_BH) that has been reported in previous works for AGNs and Galactic black hole X-ray binaries (XRBs). The QPO frequency is stable over almost two decades, suggesting that it may correspond to the high-frequency type found in XRBs and originates, perhaps, from a certain disk resonance mode. In the 3:2 twin-frequency resonance model, our best estimate on the M_BH range implies that a maximal black hole spin can be ruled out. We find that all ultrasoft AGNs reported so far display quasi-periodicities in the X-ray emission, suggesting a possible link on the part of the extreme variability phenomenon to the ultrasoft X-ray component. This indicates that ultrasoft AGNs could be the most promising candidates in future searches for X-ray periodicities.
We present a multi-epoch X-ray spectroscopy analysis of the nearby narrow-line Seyfert I galaxy NGC 5506. For the first time, spectra taken by Chandra, XMM-Newton, Suzaku, and NuSTAR - covering the 2000-2014 time span - are analyzed simultaneously, u sing state-of-the-art models to describe reprocessing of the primary continuum by optical thick matter in the AGN environment. The main goal of our study is determining the spin of the supermassive black hole (SMBH). The nuclear X-ray spectrum is photoelectrically absorbed by matter with column density $simeq 3 times 10^{22}$ cm$^{-2}$. A soft excess is present at energies lower than the photoelectric cut-off. Both photo-ionized and collisionally ionized components are required to fit it. This component is constant over the time-scales probed by our data. The spectrum at energies higher than 2 keV is variable. We propose that its evolution could be driven by flux-dependent changes in the geometry of the innermost regions of the accretion disk. The black hole spin in NGC 5506 is constrained to be 0.93$pm _{ 0.04 }^{0.04}$ at 90% confidence level for one interesting parameter.
Extragalactic cosmic ray populations are important diagnostic tools for tracking the distribution of energy in nuclei and for distinguishing between activity powered by star formation versus active galactic nuclei (AGNs). Here, we compare different d iagnostics of the cosmic ray populations of the nuclei of Arp 220 based on radio synchrotron observations and the recent gamma-ray detection. We find the gamma-ray and radio emission to be incompatible; a joint solution requires at minimum a factor of 4 - 8 times more energy coming from supernovae and a factor of 40 - 70 more mass in molecular gas than is observed. We conclude that this excess of gamma-ray flux in comparison to all other diagnostics of star-forming activity indicates that there is an AGN present that is providing the extra cosmic rays, likely in the western nucleus.
The origin of the narrow Fe-K{alpha} fluorescence line at 6.4 keV from active galactic nuclei has long been under debate; some of the possible sites are the outer accretion disk, the broad line region, a molecular torus, or interstellar/intracluster media. In February-March 2016, we performed the first X-ray microcalorimeter spectroscopy with the Soft X-ray Spectrometer (SXS) onboard the Hitomi satellite of the Fanaroff-Riley type I radio galaxy NGC 1275 at the center of the Perseus cluster of galaxies. With the high energy resolution of ~5 eV at 6 keV achieved by Hitomi/SXS, we detected the Fe-K{alpha} line with ~5.4 {sigma} significance. The velocity width is constrained to be 500-1600 km s$^{-1}$ (FWHM for Gaussian models) at 90% confidence. The SXS also constrains the continuum level from the NGC 1275 nucleus up to ~20 keV, giving an equivalent width ~20 eV of the 6.4 keV line. Because the velocity width is narrower than that of broad H{alpha} line of ~2750 km s$^{-1}$, we can exclude a large contribution to the line flux from the accretion disk and the broad line region. Furthermore, we performed pixel map analyses on the Hitomi/SXS data and image analyses on the Chandra archival data, and revealed that the Fe-K{alpha} line comes from a region within ~1.6 kpc from the NGC 1275 core, where an active galactic nucleus emission dominates, rather than that from intracluster media. Therefore, we suggest that the source of the Fe-K{alpha} line from NGC 1275 is likely a low-covering fraction molecular torus or a rotating molecular disk which probably extends from a pc to hundreds pc scale in the active galactic nucleus system.
112 - X. W. Shu , Y. Q. Xue , D. Z. Liu 2018
We present a multiwavelength study of an atypical submillimeter galaxy in the GOODS-North field, with the aim to understand its physical properties of stellar and dust emission, as well as the central AGN activity. Although it is shown that the sourc e is likely an extremely dusty galaxy at high redshift, its exact position of submillimeter emission is unknown. With the new NOEMA interferometric imaging, we confirm that the source is a unique dusty galaxy. It has no obvious counterpart in the optical and even NIR images observed with HST at lambda~<1.4um. Photometric-redshift analyses from both stellar and dust SED suggest it to likely be at z~>4, though a lower redshift at z~>3.1 cannot be fully ruled out (at 90% confidence interval). Explaining its unusual optical-to-NIR properties requires an old stellar population (~0.67 Gyr), coexisting with a very dusty ongoing starburst component. The latter is contributing to the FIR emission, with its rest-frame UV and optical light being largely obscured along our line of sight. If the observed fluxes at the rest-frame optical/NIR wavelengths were mainly contributed by old stars, a total stellar mass of ~3.5x10^11Msun would be obtained. An X-ray spectral analysis suggests that this galaxy harbors a heavily obscured AGN with N_H=3.3x10^23 cm^-2 and an intrinsic 2-10 keV luminosity of L_X~2.6x10^44 erg/s, which places this object among distant type 2 quasars. The radio emission of the source is extremely bright, which is an order of magnitude higher than the star-formation-powered emission, making it one of the most distant radio-luminous dusty galaxies. The combined characteristics of the galaxy suggest that the source appears to have been caught in a rare but critical transition stage in the evolution of submillimeter galaxies, where we are witnessing the birth of a young AGN and possibly the earliest stage of its jet formation and feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا