ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution, 3D radiative transfer modelling V. A detailed model of the M51 interacting pair

78   0   0.0 ( 0 )
 نشر من قبل Angelos Nersesian
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Investigating the dust heating mechanisms in galaxies provides a deeper understanding of how the internal energy balance drives their evolution. Over the last decade, radiative transfer simulations based on the Monte Carlo method have underlined the role of the various stellar populations heating the diffuse dust. Beyond the expected heating through ongoing star formation, both older stellar population (> 8Gyr) and even AGN can contribute energy to the infrared emission of diffuse dust. Here, we examine how the radiation of an external heating source, like the less massive galaxy NGC5195, in the M51 interacting system, could affect the heating of the diffuse dust of its parent galaxy, NGC5194, and vice versa. To quantify the exchange of energy between the two galaxies we use SKIRT, a state-of-the-art Monte Carlo radiative transfer code. In the interest of modelling, the assumed centre-to-centre distance separation between the two galaxies is 10kpc. Our model reproduces the global SED of the system, and it closely matches the observed images. In total, 40.7% of the intrinsic stellar radiation of the combined system is absorbed by dust. Furthermore, we quantify the contribution of the various dust heating sources in the system, and find that the young stellar population of NGC5194 is the predominant dust-heating agent, with a global heating fraction of 71.2%. Another 23% is provided by the older stellar population of the same galaxy, while the remaining 5.8% has its origin in NGC5195. Locally, we find that the regions of NGC5194 closer to NGC5195 are significantly affected by the radiation field of the latter, with the absorbed energy fraction rising up to 38%. The contribution of NGC5195 remains under the percentage level in the outskirts of the disc of NGC5194. This is the first time that the heating of the diffuse dust by a companion galaxy is quantified in a nearby interacting system.

قيم البحث

اقرأ أيضاً

Context: Dust reprocesses about half of the stellar radiation in galaxies. The thermal re-emission by dust of absorbed energy is considered driven merely by young stars and, consequently, often applied to trace the star formation rate in galaxies. Re cent studies have argued that the old stellar population might anticipate a non-negligible fraction of the radiative dust heating. Aims: In this work, we aim to analyze the contribution of young (< 100 Myr) and old (~ 10 Gyr) stellar populations to radiative dust heating processes in the nearby grand-design spiral galaxy M51 using radiative transfer modeling. High-resolution 3D radiative transfer (RT) models are required to describe the complex morphologies of asymmetric spiral arms and clumpy star-forming regions and model the propagation of light through a dusty medium. Methods: In this paper, we present a new technique developed to model the radiative transfer effects in nearby face-on galaxies. We construct a high-resolution 3D radiative transfer model with the Monte-Carlo code SKIRT accounting for the absorption, scattering and non-local thermal equilibrium (NLTE) emission of dust in M51. The 3D distribution of stars is derived from the 2D morphology observed in the IRAC 3.6 {mu}m, GALEX FUV, H{alpha} and MIPS 24 {mu}m wavebands, assuming an exponential vertical distribution with an appropriate scale height. The dust geometry is constrained through the far-ultraviolet (FUV) attenuation, which is derived from the observed total-infrared-to-far-ultraviolet luminosity ratio. The stellar luminosity, star formation rate and dust mass have been scaled to reproduce the observed stellar spectral energy distribution (SED), FUV attenuation and infrared SED. (abridged)
117 - Angelos Nersesian 2020
Context: Dust in late-type galaxies in the local Universe is responsible for absorbing approximately one third of the energy emitted by stars. It is often assumed that dust heating is mainly attributable to the absorption of UV and optical photons em itted by the youngest (<= 100 Myr) stars. Consequently, thermal re-emission by dust at FIR wavelengths is often linked to the star-formation activity of a galaxy. However, several studies argue that the contribution to dust heating by much older stars might be more significant. Advances in radiation transfer (RT) simulations finally allow us to actually quantify the heating mechanisms of diffuse dust by the stellar radiation field. Aims: As one of the main goals in the DustPedia project, we have constructed detailed 3D stellar and dust RT models for nearby galaxies. We analyse the contribution of the different stellar populations to the dust heating in four face-on barred galaxies: NGC1365, M83, M95, and M100. We aim to quantify the fraction directly related to young stars, both globally and on local scales, and to assess the influence of the bar on the heating fraction. Results: We derive global attenuation laws for each galaxy and confirm that galaxies of high sSFR have shallower attenuation curves and weaker UV bumps. On average, 36.5% of the bolometric luminosity is absorbed by dust. We report a clear effect of the bar structure on the radial profiles of the dust-heating fraction by the young stars, and the dust temperature. We find that the young stars are the main contributors to the dust heating, donating, on average ~59% of their luminosity to this purpose throughout the galaxy. This dust-heating fraction drops to ~53% in the bar region and ~38% in the bulge region where the old stars are the dominant contributors to the dust heating. We also find a strong link between the heating fraction by the young stars and the sSFR.
Dust emission, an important diagnostic of star formation and ISM mass throughout the Universe, can be powered by sources unrelated to ongoing star formation. In the framework of the DustPedia project we have set out to disentangle the radiation of th e ongoing star formation from that of the older stellar populations. This is done through detailed, 3D radiative transfer simulations of face-on spiral galaxies. In this particular study, we focus on NGC 1068, which contains an active galactic nucleus (AGN). The effect of diffuse dust heating by AGN (beyond the torus) was so far only investigated for quasars. This additional dust heating source further contaminates the broadband fluxes on which classic galaxy modelling tools rely to derive physical properties. We aim to fit a realistic model to the observations of NGC 1068 and quantify the contribution of the several dust heating sources. Our model is able to reproduce the global spectral energy distribution of the galaxy. It matches the resolved optical and infrared images fairly well, but deviates in the UV and the submm. We find a strong wavelength dependency of AGN contamination to the broadband fluxes. It peaks in the MIR, drops in the FIR, but rises again at submm wavelengths. We quantify the contribution of the dust heating sources in each 3D dust cell and find a median value of 83% for the star formation component. The AGN contribution is measurable at the percentage level in the disc, but quickly increases in the inner few 100 pc, peaking above 90%. This is the first time the phenomenon of an AGN heating the diffuse dust beyond its torus is quantified in a nearby star-forming galaxy. NGC 1068 only contains a weak AGN, meaning this effect can be stronger in galaxies with a more luminous AGN. This could significantly impact the derived star formation rates and ISM masses for such systems.
We extend to three-dimensional space the approximate M_2 model for the slab geometry studied in our previous paper. The B_2 model therein, as a special case of the second order extended quadrature method of moments (EQMOM), is proved to be globally h yperbolic. The model we proposed here extends EQMOM to multiple dimensions following the idea to approximate the maximum entropy closure for the slab geometry case. Like the M_2 closure, the ansatz of the new model has the capacity to capture both isotropic and beam-like solutions, while the new model has fluxes in closed-form, thus is applicable to practical numerical simulations. The rotational invariance, realizability, and hyperbolicity of the model are studied.
Sub-millimetre dust emission is often used to derive the column density N of dense interstellar clouds. The observations consist of data at several wavelengths but of variable resolution. We examine two procedures that been proposed for the estimatio n of high resolution N maps. Method A uses a low-resolution temperature map combined with higher resolution intensity data while Method B combines N estimates from different wavelength ranges. Our aim is to determine the accuracy of the methods relative to the true column densities and the estimates obtainable with radiative transfer modelling. We use magnetohydrodynamical (MHD) simulations and radiative transfer calculations to simulate sub-millimetre observations at the wavelengths of the Herschel Space Observatory. The observations are analysed with the methods and the results compared to the true values and to the results from radiative transfer modelling of observations. Both methods A and B give relatively reliable column density estimates at the resolution of 250um data while also making use of the longer wavelengths. For high signal-to-noise data, the results of Method B are better correlated with the true column density, while Method A is less sensitive to noise. When the cloud has internal heating, results of Method B are consistent with those that would be obtained with high-resolution data. Because of line-of-sight temperature variations, these underestimate the true column density and, because of a favourable cancellation of errors, Method A can sometimes give more correct values. Radiative transfer modelling, even with very simple 3D cloud models, can provide better results. However, the complexity of the models required for improvements increases rapidly with the complexity and opacity of the clouds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا