ﻻ يوجد ملخص باللغة العربية
We investigate CO$_2$-driven diffusiophoresis of colloidal particles and bacterial cells in a Hele-Shaw geometry. Combining experiments and a model, we understand the characteristic length and time scales of CO$_2$-driven diffusiophoresis in relation to system dimensions and CO$_2$ diffusivity. Directional migration of wild-type V. cholerae and a mutant lacking flagella, as well as S. aureus and P. aeruginosa, near a dissolving CO$_2$ source shows that diffusiophoresis of bacteria is achieved independent of cell shape and Gram stain. Long-time experiments suggest possible applications for bacterial diffusiophoresis to cleaning systems or anti-biofouling surfaces.
Near field hydrodynamic interactions are essential to determine many important emergent behaviors observed in active suspensions, but have not been successfully modeled so far. In this work we propose an effective model capable of efficiently capturi
We report an empirical power law for the reduction of network permeability in statistically homogeneous spatial networks upon removal of a single edge. We characterize this power law for plexus-like microvascular sinusoidal networks from liver tissue
We identify a structural one-body force field that sustains spatial inhomogeneities in nonequilibrium overdamped Brownian many-body systems. The structural force is perpendicular to the local flow direction, it is free of viscous dissipation, it is m
As a natural and functional behavior, various microorganisms exhibit gravitaxis by orienting and swimming upwards against gravity. Swimming autophoretic nanomotors described herein, comprising bimetallic nanorods, preferentially orient upwards and sw
The design of artificial microswimmers is often inspired by the strategies of natural microorganisms. Many of these creatures exploit the fact that elasticity breaks the time-reversal symmetry of motion at low Reynolds numbers, but this principle has