ﻻ يوجد ملخص باللغة العربية
Spontaneous symmetry breaking constitutes a paradigmatic classification scheme of matter. However, broken symmetry also entails domain degeneracy that often impedes identification of novel low symmetry states. In quantum matter, this is additionally complicated by competing intertwined symmetry breaking orders. A prime example is that of unconventional superconductivity and density-wave orders in doped cuprates in which their respective symmetry relation remains a key question. Using uniaxial pressure as a domain-selective stimulus in combination with x-ray diffraction, we unambiguously reveal that the fundamental symmetry of the charge order in the prototypical cuprate La$_{1.88}$Sr$_{0.12}$CuO$_4$ is characterized by uniaxial stripes. We further demonstrate the direct competition of this stripe order with unconventional superconductivity via magnetic field tuning. The stripy nature of the charge-density-wave state established by our study is a prerequisite for the existence of a superconducting pair-density-wave -- a theoretical proposal that clarifies the interrelation of intertwined quantum phases in unconventional superconductors -- and paves the way for its high-temperature realization.
High-Tc superconductivity in cuprates is generally believed to arise from carrier doping an antiferromagnetic Mott (AFM) insulator. Theoretical proposals and emerging experimental evidence suggest that this process leads to the formation of intriguin
Motivated by the recent discovery of superconductivity in doped NdNiO$_2$, we study the magnetic exchange interaction $J$ in layered $d^9$ nickelates from first principles. The mother compounds of the high-$T_{rm c}$ cuprates belong to the charge-tra
We report the low-energy electrodynamics of a moderately clean A15 superconductor (SC) following ultrafast excitation to understand and manipulate terahertz (THz) quasi--particle (QP) transport by tuning pump photoexcitation of from competing orders.
Quantum well states appear in metallic thin films due to the confinement of the wave function by the film interfaces. Using angle-resolved photoemission spectroscopy, we unexpectedly observe quantum well states in fractured single crystals of CeCoIn$
We report observation of strong magnetic proximity coupling in a heterostructured superconductor Sr$_2$VO$_3$FeAs, determined by the upper critical fields $H_{c2}(T)$ measurements up to 65 T. Using the resistivity and the radio-frequency measurements