ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning a Single Model with a Wide Range of Quality Factors for JPEG Image Artifacts Removal

355   0   0.0 ( 0 )
 نشر من قبل Jianwei Li
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Lossy compression brings artifacts into the compressed image and degrades the visual quality. In recent years, many compression artifacts removal methods based on convolutional neural network (CNN) have been developed with great success. However, these methods usually train a model based on one specific value or a small range of quality factors. Obviously, if the test images quality factor does not match to the assumed value range, then degraded performance will be resulted. With this motivation and further consideration of practical usage, a highly robust compression artifacts removal network is proposed in this paper. Our proposed network is a single model approach that can be trained for handling a wide range of quality factors while consistently delivering superior or comparable image artifacts removal performance. To demonstrate, we focus on the JPEG compression with quality factors, ranging from 1 to 60. Note that a turnkey success of our proposed network lies in the novel utilization of the quantization tables as part of the training data. Furthermore, it has two branches in parallel---i.e., the restoration branch and the global branch. The former effectively removes the local artifacts, such as ringing artifacts removal. On the other hand, the latter extracts the global features of the entire image that provides highly instrumental image quality improvement, especially effective on dealing with the global artifacts, such as blocking, color shifting. Extensive experimental results performed on color and grayscale images have clearly demonstrated the effectiveness and efficacy of our proposed single-model approach on the removal of compression artifacts from the decoded image.

قيم البحث

اقرأ أيضاً

70 - Hong Wang , Qi Xie , Qian Zhao 2020
Deep learning (DL) methods have achieved state-of-the-art performance in the task of single image rain removal. Most of current DL architectures, however, are still lack of sufficient interpretability and not fully integrated with physical structures inside general rain streaks. To this issue, in this paper, we propose a model-driven deep neural network for the task, with fully interpretable network structures. Specifically, based on the convolutional dictionary learning mechanism for representing rain, we propose a novel single image deraining model and utilize the proximal gradient descent technique to design an iterative algorithm only containing simple operators for solving the model. Such a simple implementation scheme facilitates us to unfold it into a new deep network architecture, called rain convolutional dictionary network (RCDNet), with almost every network module one-to-one corresponding to each operation involved in the algorithm. By end-to-end training the proposed RCDNet, all the rain kernels and proximal operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers, and thus naturally lead to its better deraining performance, especially in real scenarios. Comprehensive experiments substantiate the superiority of the proposed network, especially its well generality to diverse testing scenarios and good interpretability for all its modules, as compared with state-of-the-arts both visually and quantitatively. The source codes are available at url{https://github.com/hongwang01/RCDNet}.
We present a comprehensive study and evaluation of existing single image compression artifacts removal algorithms, using a new 4K resolution benchmark including diversified foreground objects and background scenes with rich structures, called Large-s cale Ideal Ultra high definition 4K (LIU4K) benchmark. Compression artifacts removal, as a common post-processing technique, aims at alleviating undesirable artifacts such as blockiness, ringing, and banding caused by quantization and approximation in the compression process. In this work, a systematic listing of the reviewed methods is presented based on their basic models (handcrafted models and deep networks). The main contributions and novelties of these methods are highlighted, and the main development directions, including architectures, multi-domain sources, signal structures, and new targeted units, are summarized. Furthermore, based on a unified deep learning configuration (i.e. same training data, loss function, optimization algorithm, etc.), we evaluate recent deep learning-based methods based on diversified evaluation measures. The experimental results show the state-of-the-art performance comparison of existing methods based on both full-reference, non-reference and task-driven metrics. Our survey would give a comprehensive reference source for future research on single image compression artifacts removal and inspire new directions of the related fields.
219 - Ziyi Liu 2021
The dynamic range of our normal life can exceeds 120 dB, however, the smart-phone cameras and the conventional digital cameras can only capture a dynamic range of 90 dB, which sometimes leads to loss of details for the recorded image. Now, some profe ssional hardware applications and image fusion algorithms have been devised to take wide dynamic range (WDR), but unfortunately existing devices cannot display WDR image. Tone mapping (TM) thus becomes an essential step for exhibiting WDR image on our ordinary screens, which convert the WDR image into low dynamic range (LDR) image. More and more researchers are focusing on this topic, and give their efforts to design an excellent tone mapping operator (TMO), showing detailed images as the same as the perception that human eyes could receive. Therefore, it is important for us to know the history, development, and trend of TM before proposing a practicable TMO. In this paper, we present a comprehensive study of the most well-known TMOs, which divides TMOs into traditional and machine learning-based category.
161 - Hong Wang , Yichen Wu , Minghan Li 2019
Rain streaks might severely degenerate the performance of video/image processing tasks. The investigations on rain removal from video or a single image has thus been attracting much research attention in the field of computer vision and pattern recog nition, and various methods have been proposed against this task in the recent years. However, there is still not a comprehensive survey paper to summarize current rain removal methods and fairly compare their generalization performance, and especially, still not a off-the-shelf toolkit to accumulate recent representative methods for easy performance comparison and capability evaluation. Aiming at this meaningful task, in this study we present a comprehensive review for current rain removal methods for video and a single image. Specifically, these methods are categorized into model-driven and data-driven approaches, and more elaborate branches of each approach are further introduced. Intrinsic capabilities, especially generalization, of representative state-of-the-art methods of each approach have been evaluated and analyzed by experiments implemented on synthetic and real data both visually and quantitatively. Furthermore, we release a comprehensive repository, including direct links to 74 rain removal papers, source codes of 9 methods for video rain removal and 20 ones for single image rain removal, 19 related project pages, 6 synthetic datasets and 4 real ones, and 4 commonly used image quality metrics, to facilitate reproduction and performance comparison of current existing methods for general users. Some limitations and research issues worthy to be further investigated have also been discussed for future research of this direction.
Images obtained in real-world low-light conditions are not only low in brightness, but they also suffer from many other types of degradation, such as color bias, unknown noise, detail loss and halo artifacts. In this paper, we propose a very fast dee p learning framework called Bringing the Lightness (denoted as BLNet) that consists of two U-Nets with a series of well-designed loss functions to tackle all of the above degradations. Based on Retinex Theory, the decomposition net in our model can decompose low-light images into reflectance and illumination and remove noise in the reflectance during the decomposition phase. We propose a Noise and Color Bias Control module (NCBC Module) that contains a convolutional neural network and two loss functions (noise loss and color loss). This module is only used to calculate the loss functions during the training phase, so our method is very fast during the test phase. This module can smooth the reflectance to achieve the purpose of noise removal while preserving details and edge information and controlling color bias. We propose a network that can be trained to learn the mapping between low-light and normal-light illumination and enhance the brightness of images taken in low-light illumination. We train and evaluate the performance of our proposed model over the real-world Low-Light (LOL) dataset), and we also test our model over several other frequently used datasets (LIME, DICM and MEF datasets). We conduct extensive experiments to demonstrate that our approach achieves a promising effect with good rubustness and generalization and outperforms many other state-of-the-art methods qualitatively and quantitatively. Our method achieves high speed because we use loss functions instead of introducing additional denoisers for noise removal and color correction. The code and model are available at https://github.com/weixinxu666/BLNet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا