ﻻ يوجد ملخص باللغة العربية
The technique of transforming voices in order to hide the real identity of a speaker is called voice disguise, among which automatic voice disguise (AVD) by modifying the spectral and temporal characteristics of voices with miscellaneous algorithms are easily conducted with softwares accessible to the public. AVD has posed great threat to both human listening and automatic speaker verification (ASV). In this paper, we have found that ASV is not only a victim of AVD but could be a tool to beat some simple types of AVD. Firstly, three types of AVD, pitch scaling, vocal tract length normalization (VTLN) and voice conversion (VC), are introduced as representative methods. State-of-the-art ASV methods are subsequently utilized to objectively evaluate the impact of AVD on ASV by equal error rates (EER). Moreover, an approach to restore disguised voice to its original version is proposed by minimizing a function of ASV scores w.r.t. restoration parameters. Experiments are then conducted on disguised voices from Voxceleb, a dataset recorded in real-world noisy scenario. The results have shown that, for the voice disguise by pitch scaling, the proposed approach obtains an EER around 7% comparing to the 30% EER of a recently proposed baseline using the ratio of fundamental frequencies. The proposed approach generalizes well to restore the disguise with nonlinear frequency warping in VTLN by reducing its EER from 34.3% to 18.5%. However, it is difficult to restore the source speakers in VC by our approach, where more complex forms of restoration functions or other paralinguistic cues might be necessary to restore the nonlinear transform in VC. Finally, contrastive visualization on ASV features with and without restoration illustrate the role of the proposed approach in an intuitive way.
The ASVspoof challenge series was born to spearhead research in anti-spoofing for automatic speaker verification (ASV). The two challenge editions in 2015 and 2017 involved the assessment of spoofing countermeasures (CMs) in isolation from ASV using
Recent years have seen growing efforts to develop spoofing countermeasures (CMs) to protect automatic speaker verification (ASV) systems from being deceived by manipulated or artificial inputs. The reliability of spoofing CMs is typically gauged usin
This paper presents a new voice impersonation attack using voice conversion (VC). Enrolling personal voices for automatic speaker verification (ASV) offers natural and flexible biometric authentication systems. Basically, the ASV systems do not inclu
The automatic speaker verification spoofing and countermeasures (ASVspoof) challenge series is a community-led initiative which aims to promote the consideration of spoofing and the development of countermeasures. ASVspoof 2021 is the 4th in a series
Automatic speaker verification (ASV) vendors and corpus providers would both benefit from tools to reliably extrapolate performance metrics for large speaker populations without collecting new speakers. We address false alarm rate extrapolation under