ﻻ يوجد ملخص باللغة العربية
With many variables to adjust, conventional manual forward planning for Gamma Knife (GK) radiosurgery is very complicated and cumbersome. The resulting plan quality heavily depends on planners skills, experiences and devoted efforts, and varies significantly among cases, planners, and institutions. Quality control for GK planning is desired to consistently provide high-quality plan to each patient. In this study, we proposed a quality control method for GK planning by building a database of high-quality GK plans. Patient anatomy was described by target volume, target shape complexity, and spatial relationship between target and nearby organs, which determine GK planning difficulty level. Plan quality was evaluated using target coverage, selectivity, intermediate dose spillage, maximum dose to 0.1 cc of brainstem, mean dose of ipsilateral cochlea, and beam-on time. When a new plan is created, a high-quality plan that has the most similar target volume size and shape complexity will be identified from the database. A model has also been built to predict the dose to brainstem and cochlea based on their overlap volume histograms. The identified reference plan and the predicted organ dose will help planners to make quality control decisions accordingly. To validate this method, we have built a database for vestibular schwannoma, which are considered to be challenging for GK planning due to the irregularly-shaped target and its proximity to brainstem and cochlea. Five cases were tested, among which one case was considered to be of high quality and four cases had a lower plan quality than prediction. These four cases were replanned and got substantially improved. Our results have demonstrated the efficacy of our proposed quality control method. This method may also be used as a plan quality prediction method to facilitate the development of automatic treatment planning for GK radiosurgery.
Purpose: Several inverse planning algorithms have been developed for Gamma Knife (GK) radiosurgery to determine a large number of plan parameters via solving an optimization problem, which typically consists of multiple objectives. The priorities amo
Due to the complexity and cumbersomeness of Gamma Knife (GK) manual forward planning, the quality of the resulting treatment plans heavily depends on the planners skill, experience and the amount of effort devoted to plan development. Hence, GK plan
Noncoplanar radiation therapy treatment planning has the potential to improve dosimetric quality as compared to traditional coplanar techniques. Likewise, automated treatment planning algorithms can reduce a planners active treatment planning time an
We previously proposed an intelligent automatic treatment planning framework for radiotherapy, in which a virtual treatment planner network (VTPN) was built using deep reinforcement learning (DRL) to operate a treatment planning system (TPS). Despite
Purpose: A Monte Carlo (MC) beam model and its implementation in a clinical treatment planning system (TPS, Varian Eclipse) are presented for a modified ultra-high dose-rate electron FLASH radiotherapy (eFLASH-RT) LINAC. Methods: The gantry head wi