ﻻ يوجد ملخص باللغة العربية
The anisotropic London equations taking into account the normal currents are derived and applied to the problem of the surface impedance in the Meisner state of anisotropic materials. It is shown that the complex susceptibility of anisotropic slab depends on the orientation of the applied microwave field relative to the crystal axes. In particular, the anisotropic sample in the microwave field is subject to a torque, unless the field is directed along with one of the crystal principle axes.
The dissipative currents due to normal excitations are included in the London description. The resulting time dependent London equations are solved for a moving vortex and a moving vortex lattice. It is shown that the field distribution of a moving v
A simple procedure to extract anisotropic London penetration depth components from the magnetic susceptibility measurements in realistic samples of cuboidal shape is described.
We study the effects of anisotropic order parameters on the temperature dependence of London penetration depth anisotropy $gamma_lambda(T)$. After MgB$_2$, this dependence is commonly attributed to distinct gaps on multi-band Fermi surfaces in superc
We show on a few examples of one-band materials with spheroidal Fermi surfaces and anisotropic order parameters that anisotropies $gamma_H$ of the upper critical field and $gamma_lambda$ of the London penetration depth depend on temperature, the feat
In- and out-of-plane magnetic penetration depths were measured in three iron-based pnictide superconducting systems. All studied samples of both 122 systems show a robust power-law behavior, $lambda (T) T^n$, with the sample-dependent exponent n=2-2.