ترغب بنشر مسار تعليمي؟ اضغط هنا

Competing nodal d-wave superconductivity and antiferromagnetism

136   0   0.0 ( 0 )
 نشر من قبل Xiao Yan Xu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Competing unconventional superconductivity and antiferromagnetism widely exist in several strongly correlated quantum materials whose direct simulation generally suffers from fermion sign problem. Here we report unbiased Quantum Monte Carlo (QMC) simulations on a sign-problem-free repulsive toy model with same onsite symmetries as the standard Hubbard model on a 2D square lattice. Using QMC, supplemented with mean-field and continuum field-theory arguments, we find that it hosts three distinct phases: a nodal d-wave phase, an antiferromagnet, and an intervening phase which hosts coexisting antiferromagnetism and nodeless d-wave superconductivity. The transition from the coexisting phase to the antiferromagnet is described by the 2+1-D XY universality class, while the one from the coexisting phase to the nodal d-wave phase is described by the Heisenberg-Gross-Neveu theory. The topology of our phase diagram resembles that of layered organic materials which host pressure tuned Mott transition from antiferromagnet to unconventional superconductor at half-filling.



قيم البحث

اقرأ أيضاً

136 - Z.Y. Weng , Y. Zhou , 2003
We propose a class of wave functions that provide a unified description of antiferromagnetism and d-wave superconductivity in (doped) Mott insulators. The wave function has a Jastrow form and prohibits double occupancies. In the absence of holes, the wave function describes antiferromagnetism accurately. Off diagonal long range order develops at finite doping and the superconducting order parameter has d-wave symmetry. We also show how nodal quasiparticles and neutral spin excitations can be constructed from this wave function.
We present a new approach to investigate the coexistence of antiferromagnetism and d-wave superconductivity in the two dimensional extended Hubbard model within a numerically exact cluster dynamical mean-field approximation. Self-consistent solutions with two non-zero order parameters exists in the wide range of doping level and temperatures. A linearized equation for energy spectrum near the Fermi level have been solved. The resulting d-wave gap has the correct magnitude and k-dependence but some distortion compare to the pure d_{x^2-y^2} superconducting order parameter due to the presence of underlying antiferromagnetic ordering.
We study how $d$-wave superconductivity is changed when illuminated by circularly-polarised light (CPL) in the repulsive Hubbard model in the strong-coupling regime. We adopt the Floquet formalism for the Gutzwiller-projected effective Hamiltonian wi th the time-periodic Schrieffer-Wolff transformation. We find that CPL induces a topological superconductivity with a $d+id$ pairing, which arises from the chiral spin coupling and the three-site term generated by the CPL. The latter effect remains significant even for low frequencies and low intensities of the CPL. This is clearly seen in the obtained phase diagram against the laser intensity and temperature for various frequencies red-detuned from the Hubbard $U$, with the transient dynamics also examined. The phenomenon revealed here can provide a novel way to induce a topological superconductivity.
190 - J. Reiss , D. Rohe , 2006
We analyze the competition between antiferromagnetism and superconductivity in the two-dimensional Hubbard model by combining a functional renormalization group flow with a mean-field theory for spontaneous symmetry breaking. Effective interactions a re computed by integrating out states above a scale Lambda_{MF} in one-loop approximation, which captures in particular the generation of an attraction in the d-wave Cooper channel from fluctuations in the particle-hole channel. These effective interactions are then used as an input for a mean-field treatment of the remaining low-energy states, with antiferromagnetism, singlet superconductivity and triplet pi-pairing as the possible order parameters. Antiferromagnetism and superconductivity suppress each other, leaving only a small region in parameter space where both orders can coexist with a sizable order parameter for each. Triplet pi-pairing appears generically in the coexistence region, but its feedback on the other order parameters is very small.
We present a computational study of antiferromagnetic transition in RuO$_2$. The rutile structure with the magnetic sublattices coupled by $pi/2$-rotation leads to a spin-polarized band structure in the antiferromagnetic state, which gives rise to a $d$-wave modulation of the Fermi surface in the spin-triplet channel. We argue a finite spin conductivity that changes sign in the $ab$ plane is expected RuO$_2$ because of this band structure. We analyze the origin of the antiferromagnetic instability and link it to presence of a nodal line close to the Fermi level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا