ترغب بنشر مسار تعليمي؟ اضغط هنا

Limiting masses and radii of neutron stars and their implications

73   0   0.0 ( 0 )
 نشر من قبل Sophia Han
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine equation of state of dense matter up to twice nuclear saturation density ($n_{rm sat}=0.16, text{fm}^{-3}$) obtained using chiral effective field theory ($chi$EFT), and recent observations of neutron stars to gain insights about the high-density matter encountered in their cores. A key element in our study is the recent Bayesian analysis of correlated EFT truncation errors based on order-by-order calculations up to next-to-next-to-next-to-leading order in the $chi$EFT expansion. We refine the bounds on the maximum mass imposed by causality at high densities, and provide stringent limits on the maximum and minimum radii of $sim1.4,{rm M}_{odot}$ and $sim2.0,{rm M}_{odot}$ stars. Including $chi$EFT predictions from $n_{rm sat}$ to $2,n_{rm sat}$ reduces the permitted ranges of the radius of a $1.4,{rm M}_{odot}$ star, $R_{1.4}$, by $sim3.5, text{km}$. If observations indicate $R_{1.4}<11.2, text{km}$, our study implies that either the squared speed of sound $c^2_{s}>1/2$ for densities above $2,n_{rm sat}$, or that $chi$EFT breaks down below $2,n_{rm sat}$. We also comment on the nature of the secondary compact object in GW190814 with mass $simeq 2.6,{rm M}_{odot}$, and discuss the implications of massive neutron stars $>2.1 ,{rm M}_{odot},(2.6,{rm M}_{odot})$ in future radio and gravitational-wave searches. Some form of strongly interacting matter with $c^2_{s}>0.35, (0.55)$ must be realized in the cores of such massive neutron stars. In the absence of phase transitions below $2,n_{rm sat}$, the small tidal deformability inferred from GW170817 lends support for the relatively small pressure predicted by $chi$EFT for the baryon density $n_{rm B}$ in the range $1-2,n_{rm sat}$. Together they imply that the rapid stiffening required to support a high maximum mass should occur only when $n_{rm B} gtrsim 1.5-1.8,n_{rm sat}$.

قيم البحث

اقرأ أيضاً

Precision mass spectrometry of neutron-rich nuclei is of great relevance for astrophysics. Masses of exotic nuclides impose constraints on models for the nuclear interaction and thus affect the description of the equation of state of nuclear matter, which can be extended to describe neutron-star matter. With knowledge of the masses of nuclides near shell closures, one can also derive the neutron-star crustal composition. The Penning-trap mass spectrometer ISOLTRAP at CERN-ISOLDE has recently achieved a breakthrough measuring the mass of 82Zn, which allowed constraining neutron-star crust composition to deeper layers (Wolf et al., PRL 110, 2013). We perform a more detailed study on the sequence of nuclei in the outer crust of neutron stars with input from different nuclear models to illustrate the sensitivity to masses and the robustness of neutron-star models. The dominant role of the N=50 and N=82 closed neutron shells for the crustal composition is confirmed.
We discuss new limits on masses and radii of compact stars and we conclude that they can be interpreted as an indication of the existence of two classes of stars: normal compact stars and ultra-compact stars. We estimate the critical mass at which the first configuration collapses into the second.
We present empirical measurements of the radii of 116 stars that host transiting planets. These radii are determined using only direct observables-the bolometric flux at Earth, the effective temperature, and the parallax provided by the Gaia first da ta release-and thus are virtually model independent, extinction being the only free parameter. We also determine each stars mass using our newly determined radius and the stellar density, itself a virtually model independent quantity from previously published transit analyses. These stellar radii and masses are in turn used to redetermine the transiting planet radii and masses, again using only direct observables. The median uncertainties on the stellar radii and masses are ~8% and ~30%, respectively, and the resulting uncertainties on the planet radii and masses are ~9% and ~22%, respectively. These accuracies are generally larger than previously published model-dependent precisions of ~5% and ~6% on the planet radii and masses, respectively, but the newly determined values are purely empirical. We additionally report radii for 242 stars hosting radial-velocity (non-transiting) planets, with median achieved accuracy of ~2%. Using our empirical stellar masses we verify that the majority of putative retired A stars in the sample are indeed more massive than ~1.2 Msun. Most importantly, the bolometric fluxes and angular radii reported here for a total of 498 planet host stars-with median accuracies of 1.7% and 1.8%, respectively-serve as a fundamental dataset to permit the re-determination of transiting planet radii and masses with the Gaia second data release to ~3% and ~5% accuracy, better than currently published precisions, and determined in an entirely empirical fashion.
We review the current status and recent progress of microscopic many-body approaches and phenomenological models, which are employed to construct the equation of state of neutron stars. The equation of state is relevant for the description of their s tructure and dynamical properties, and it rules also the dynamics of core-collapse supernovae and binary neutron star mergers. We describe neutron star matter assuming that the main degrees of freedom are nucleons and hyperons, disregarding the appearance of quark matter. We compare the theoretical predictions of the different equation-of-state models with the currently available data coming from both terrestrial laboratory experiments and recent astrophysical observations. We also analyse the importance of the nuclear strong interaction and equation of state for the cooling properties of neutron stars. We discuss the main open challenges in the description of the equation of state, mainly focusing on the limits of the different many-body techniques, the so-called hyperon puzzle, and the dependence of the direct URCA processes on the equation of state.
Novel processes probing the decay of nucleus after removal of a nucleon with momentum larger than Fermi momentum by hard probes finally proved unambiguously the evidence for long sought presence of short-range correlations (SRCs) in nuclei. In combin ation with the analysis of large $Q^2$, A(e,e)X processes at $x>1$ they allow us to conclude that (i) practically all nucleons with momenta $ge$ 300 MeV/c belong to SRCs, consisting mostly of two nucleons, ii) probability of such SRCs in medium and heavy nuclei is $sim 25%$, iii) a fast removal of such nucleon practically always leads to emission of correlated nucleon with approximately opposite momentum, iv) proton removal from two-nucleon SRCs in 90% of cases is accompanied by a removal of a neutron and only in 10% by a removal of another proton. We explain that observed absolute probabilities and the isospin structure of two nucleon SRCs confirm the important role that tensor forces play in internucleon interactions. We find also that the presence of SRCs requires modifications of the Landau Fermi liquid approach to highly asymmetric nuclear matter and leads to a significantly faster cooling of cold neutron stars with neutrino cooling operational even for $N_p/N_n le 0.1$. The effect is even stronger for the hyperon stars. Theoretical challenges raised by the discovered dominance of nucleon degrees of freedom in SRCs and important role of the spontaneously broken chiral symmetry in quantum chromodynamics (QCD) in resolving them are considered. We also outline directions for future theoretical and experimental studies of the physics relevant for SRCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا