ﻻ يوجد ملخص باللغة العربية
In this paper, we analyze the high-resolution UV spectra for a C1.7 solar flare (SOL2017-09-09T06:51) observed by the textit{Interface Region Imaging Spectrograph} (textit{IRIS}). {We focus on the spectroscopic observations at the locations where the cool lines of ion{Si}{4} 1402.8 AA ($sim$10$^{4.8}$ K) and ion{C}{2} 1334.5/1335.7 AA ($sim$10$^{4.4}$ K) reveal significant redshifts with Doppler velocities up to $sim$150 km s$^{-1}$.} These redshifts appear in the rise phase of the flare, then increase rapidly, reach the maximum in a few minutes, and proceed into the decay phase. Combining the images from textit{IRIS} and Atmospheric Imaging Assembly (AIA) on board the {em Solar Dynamics Observatory} ({em SDO}), we propose that the redshifts in the cool lines are caused by the downflows in the transition region and upper chromospheric layers, which likely result from a magnetic reconnection leading to the flare. In addition, the cool ion{Si}{4} and ion{C}{2} lines show gentle redshifts (a few tens of km s$^{-1}$) at some other locations, which manifest some distinct features from the above locations. This is supposed to originate from a different physical process.
Current sheet is believed to be the region of energy dissipation via magnetic reconnection in solar flares. However, its properties, for example, the dynamic process, have not been fully understood. Here we report a current sheet in a solar flare (SO
Solar flares are rapid energy release phenomena that appear as bright ribbons in the chromosphere and high-temperature loops in the corona, respectively. Supra-arcade Downflows (SADs) are plasma voids that first come out above the flare loops and the
Coronal jets are ubiquitous in active regions (ARs) and coronal holes. In this paper, we study a coronal jet related to a C3.4 circular-ribbon flare in active region 12434 on 2015 October 16. Two minifilaments were located under a 3D fan-spine struct
We present observations of distinct UV spectral properties at different locations during an atypical X-shaped flare (SOL2014-11-09T15:32) observed by the Interface Region Imaging Spectrograph (IRIS). In this flare, four chromospheric ribbons appear a
We report on new spectro-polarimetric measurements with simultaneous filter imaging observation, revealing the frequent appearance of polarization signals indicating high-speed, probably supersonic, downflows that are associated with at least three d