ﻻ يوجد ملخص باللغة العربية
We conducted series of experiments on observing a Stark-type effect in superfluid $^4$He in presence of relative laminar flows of the normal and superfluid components. It is designed a measurement cell which allows us to simultaneously create hydrodynamic flows in the liquid and to carry out high-frequency radio-measurements at external electric field. We used a dielectric disk resonator that made possible to cover a wide frequency range. In our experiments it was registered the spectrum of the dielectric disk resonator modes, as well as narrow lines of absorption of a microwave radiation in He II on its background and in different conditions. We discovered that having in the liquid helium a relative motion of the normal and superfluid fractions in the temperature range of 1.4$div$2.17 K the narrow line of absorption/radiation is observed in the EM spectrum, the frequency of which - 180 GHz - corresponds to the roton minimum. This line splits in a constant electric field. Note that in a weak electric field the value of splitting depends linearly on the electric field strength, i.e. the linear Stark effect is detected. It is found that with the external electric field increasing both split lines are displaced towards more low frequencies side. The obtained data set could be described by an empirical formula, taking into account as the linear part of the Stark effect, as well as a quadratic addition, related to the polarization part. The data point out on having particles or excitations in the liquid helium with the dipole moment $sim 10^{-4}$ D, that in four order less of the characteristic dipole moment of polar molecules. The comparison of our findings to values of the electric dipole moment (EDM) of elementary particles and nuclei is also performed. We sum up with brief discussion of extensions of the known theoretical models and possible mechanisms of the EDM production.
Area laws were first discovered by Bekenstein and Hawking, who found that the entropy of a black hole grows proportional to its surface area, and not its volume. Entropy area laws have since become a fundamental part of modern physics, from the holog
Motivated by a proposed experimental search for the electric dipole moment of the neutron (nEDM) utilizing neutron-$^3$He capture in a dilute solution of $^3$He in superfluid $^4 $He, we derive the transport properties of dilute solutions in the regi
We calculate the effect of a heat current on transporting $^3$He dissolved in superfluid $^4$He at ultralow concentration, as will be utilized in a proposed experimental search for the electric dipole moment of the neutron (nEDM). In this experiment,
We study the coupled dynamics of normal and superfluid components of the superfluid $^4$He in the channel considering the counterflow turbulence with laminar normal component. In particular, we calculated profiles of the normal velocity, the mutual f
We study numerically nonuniform quantum turbulence of coflow in a square channel by the vortex filament model. Coflow means that superfluid velocity $bm{v}_s$ and normal fluid velocity $bm{v}_n$ flow in the same direction. Quantum turbulence for ther