ﻻ يوجد ملخص باللغة العربية
It has been asked by different authors whether the two classes of Schatten-$p$-norm-based functionals $C_p(rho)=min_{sigmainmathcal{I}}||rho-sigma||_p$ and $ tilde{C}_p(rho)= |rho-Deltarho|_{p}$ with $pgeq 1$ are valid coherence measures under incoherent operations, strictly incoherent operations, and genuinely incoherent operations, respectively, where $mathcal{I}$ is the set of incoherent states and $Deltarho$ is the diagonal part of density operator $rho$. Of these questions, all we know is that $C_p(rho)$ is not a valid coherence measure under incoherent operations and strictly incoherent operations, but all other aspects remain open. In this paper, we prove that (1) $tilde{C}_1(rho)$ is a valid coherence measure under both strictly incoherent operations and genuinely incoherent operations but not a valid coherence measure under incoherent operations, (2) $C_1(rho)$ is not a valid coherence measure even under genuinely incoherent operations, and (3) neither ${C}_{p>1}(rho)$ nor $tilde{C}_{p>1}(rho)$ is a valid coherence measure under any of the three sets of operations. This paper not only provides a thorough examination on the validity of taking $C_p(rho)$ and $tilde{C}_p(rho)$ as coherence measures, but also finds an example that fulfills the monotonicity under strictly incoherent operations but violates it under incoherent operations.
We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of quantum coherence inspired from optical coherence theory
The nuclear norm and Schatten-$p$ quasi-norm of a matrix are popular rank proxies in low-rank matrix recovery. Unfortunately, computing the nuclear norm or Schatten-$p$ quasi-norm of a tensor is NP-hard, which is a pity for low-rank tensor completion
We introduce and study the l1 norm of coherence of assistance both theoretically and operationally. We first provide an upper bound for the l1 norm of coherence of assistance and show a necessary and sufficient condition for the saturation of the upp
Coherence and correlation are key features of the quantum system. Quantifying these quantities are astounding task in the framework of resource theory of quantum information processing. In this article, we identify an affinity-based metric to quantif
Quantum coherence, like entanglement, is a fundamental resource in quantum information. In recent years, remarkable progress has been made in formulating resource theory of coherence from a broader perspective. The notions of block-coherence and POVM