ﻻ يوجد ملخص باللغة العربية
We specify the structure of completely positive operators and quantum Markov semigroup generators that are symmetric with respect to a family of inner products, also providing new information on the order strucure an extreme points in some previously studied cases.
We discuss connections between the essential self-adjointness of a symmetric operator and the constancy of functions which are in the kernel of the adjoint of the operator. We then illustrate this relationship in the case of Laplacians on both manifo
We prove that the only entrywise transforms of rectangular matrices which preserve total positivity or total non-negativity are either constant or linear. This follows from an extended classification of preservers of these two properties for matrices
We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition
In this article we specialize a construction of a reflection positive Hilbert space due to Dimock and Jaffe--Ritter to the sphere $mathbb{S}^n$. We determine the resulting Osterwalder--Schrader Hilbert space, a construction that can be viewed as the
We consider the problem of essential self-adjointness of the spatial part of the Klein-Gordon operator in stationary spacetimes. This operator is shown to be a Laplace-Beltrami type operator plus a potential. In globally hyperbolic spacetimes, essent