ترغب بنشر مسار تعليمي؟ اضغط هنا

The Villafranca catalog of Galactic OB groups: I. Systems with O2-O3.5 stars

52   0   0.0 ( 0 )
 نشر من قبل Jes\\'us Ma\\'iz Apell\\'aniz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CONTEXT. The GOSSS spectral classifications and Gaia data have significantly improved our ability to measure distances and determine memberships of stellar groups with OB stars. AIMS. We have started a program to identify, measure distances, and determine the membership of Galactic stellar groups with OB stars. We start with the identification and distance determinations of groups with O stars. In this paper we concentrate on groups that contain stars with the earliest spectral subtypes. METHODS. We use GOSSS to select Galactic stellar groups with O2-O3.5 stars and a method that combines Gaia DR2 photometry, positions, proper motions, and parallaxes to assign robust memberships and measure distances. We also include the two clusters in that paper to generate our first list of 16 O-type Galactic stellar groups. RESULTS. We derive distances, determine the membership, and analyze the structure of sixteen Galactic stellar groups with O stars, Villafranca O-001 to O-016, including the 14 groups with the earliest-O-type optically-accessible stars known in the Milky Way. We compare our distance with previous results and establish that the best consistency is with VLBI parallaxes and the worst is with kinematic distances. Our results indicate that massive stars can form in relatively low-mass clusters or even in near-isolation, as is the case for the Bajamar star in the North America nebula. This lends support to the hierarchical scenario of star formation, where some stars are born in well-defined bound clusters but others are born in associations that are unbound from the beginning: groups of newborn stars come in many shapes and sizes. We propose that HD 64 568 and HD 64 315 AB could have been ejected simultaneously from Villafranca O-012 S. Our results are consistent with a difference of approx. 20 microas in the Gaia DR2 parallax zero point between bright and faint stars. (ABRIDGED)

قيم البحث

اقرأ أيضاً

136 - G.-C. Liu , Y. Huang , H.-W. Zhang 2020
We present a catalog of 5,290 RR Lyrae stars (RRLs) with metallicities estimated from spectra of the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) and the Sloan Extension for Galactic Understanding and Exploration (SEGUE) surve ys. Nearly 70 per cent of them (3,642 objects) also have systemic radial velocities measured. Given the pulsating nature of RRLs, metallicity estimates are based on spectra of individual exposures, by matching them with the synthetic templates. The systemic radial velocities are measured by fitting the observed velocity as a function of phase assuming an empirical pulsating velocity template curve. Various tests show that our analyses yield metallicities with a typical precision of 0.20,dex and systemic radial velocities with uncertainties ranging from 5 to 21,km,s$^{-1}$ (depending on the number of radial velocity measurements available for a given star). Based on the well calibrated near-infrared $PM_{W1}Z$ or $PM_{K_{rm s}}Z$, and $M_{V}$-[Fe/H] relations, precise distances are derived for these RRLs. Finally, we include Gaia DR2 proper motions in our catalog. The catalog should be very useful for various Galactic studies, especially of the Galactic halo.
In this work we make use of DR14 APOGEE spectroscopic data to study a sample of 92 known OB stars. We developed a near-infrared semi-empirical spectral classification method that was successfully used in case of four new exemplars, previously classif ied as later B-type stars. Our results agree well with those determined independently from ECHELLE optical spectra, being in line with the spectral types derived from the canonical MK blue optical system. This confirms that the APOGEE spectrograph can also be used as a powerful tool in surveys aiming to unveil and study large number of moderately and highly obscured OB stars still hidden in the Galaxy.
In this paper we report the identification of two new Galactic O2 If*/WN6 stars (WR20aa and WR20c), in the outskirt of the massive young stellar cluster Westerlund 2. The morphological similarity between the near-infrared spectra of the new stars wit h that of WR20a and WR21a (two of the most massive binaries known to date) is remarkable, indicating that probably they are also very massive stars. New optical spectroscopic observations of WR20aa suggest an intermediate O2 If*/WN6 spectral type. Based on a mosaic made from the 3.6 microns Spitzer IRAC images of the region including part of the RCW49 complex, we studied the spatial location of the new emission line stars, finding that WR20aa and WR20c are well displaced from the centre of Westerlund 2, being placed at ~ 36 pc (15.7 arcmin) and ~ 58 pc (25.0 arcmin) respectively, for an assumed heliocentric distance of 8 kpc. Also very remarkably, a radius vector connecting both stars would intercept the Westerlund 2 cluster exactly at the place where its stellar density reaches a maximum. We consequently postulate a scenario in which WR20aa and WR20c had a common origin somewhere in the cluster core, being ejected from their birthplace by dynamical interacion with some other very massive objects, perhaps during some earlier stage of the cluster evolution.
For application to surveys of interstellar matter and Galactic structure, we compute new spectrophotometric distances to 139 OB stars frequently used as background targets for UV spectroscopy. Many of these stars have updated spectral types and digit al photometry with reddening corrections from the Galactic O-Star (GOS) spectroscopic survey. We compare our new photometric distances to values used in previous IUE and FUSE surveys and to parallax distances derived from Gaia-DR2, after applying a standard (0.03 mas) offset from the quasar celestial reference frame. We find substantial differences between photometric and parallax distances (at d > 1.5 kpc) with increasing dispersion when parallax errors exceed 8%. Differences from previous surveys arise from new GOS stellar classifications, especially luminosity classes, and from reddening corrections. We apply our methods to two OB associations. For Perseus OB1 (nine O-stars) we find mean distances of $2.47pm0.57$ kpc (Gaia parallax) and $2.99pm0.14$ kpc (photometric) using a standard grid of absolute magnitudes (Bowen et al. 2008). For 29 O-stars in Car OB1 associated with Trumpler-16, Trumpler-14, Trumpler-15, and Collinder-228 star clusters, we find $2.87pm0.73$ kpc (Gaia parallax) and $2.60pm0.28$ kpc (photometric). Using an alternative grid of O-star absolute magnitudes (Martins et al. 2005) shifts these photometric distances 7% closer. Improving the distances to OB-stars will require attention to spectral types, photometry, reddening, binarity, and the grid of absolute magnitudes. We anticipate that future measurements in Gaia-DR3 will improve the precision of distances to massive star-forming regions in the Milky Way.
Based on an analysis of the catalog of magnetic fields, we have investigated the statistical properties of the mean magnetic fields for OB stars. We show that the mean effective magnetic field ${cal B}$ of a star can be used as a statistically signif icant characteristic of its magnetic field. No correlation has been found between the mean magnetic field strength ${cal B}$ and projected rotational velocity of OB stars, which is consistent with the hypothesis about a fossil origin of the magnetic field. We have constructed the magnetic field distribution function for B stars, $F({cal B})$, that has a power-law dependence on ${cal B}$ with an exponent of $approx -1.82$. We have found a sharp decrease in the function $F({cal B})$F for ${cal B}lem 400 G$ that may be related to rapid dissipation of weak stellar surface magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا