ﻻ يوجد ملخص باللغة العربية
For decades, the topological phenomena in quantum systems have always been catching our attention. Recently, there are many interests on the systems where topologically protected edge states exist, even in the presence of non-Hermiticity. Motivated by these researches, the topological properties of a non-Hermitian dice model are studied in two non-Hermitian cases, viz. in the imbalanced and the balanced dissipations. Our results suggest that the topological phases are protected by the real gaps and the bulk-edge correspondence readily seen in the real edge-state spectra. Besides, we show that the principle of the bulk-edge correspondence in Hermitian case is still effective in analyzing the three-band non-Hermitian system. We find that there are topological non-trivial phases with large Chern numbers $C=-3$ robust against the dissipative perturbations.
With respect to the quantum anomalous Hall effect (QAHE), the detection of topological nontrivial large-Chern-number phases is an intriguing subject. Motivated by recent research on Floquet topological phases, this study proposes a periodic driving p
We investigate dissipation-induced p-wave paired states of fermions in two dimensions and show the existence of spatially separated Majorana zero modes in a phase with vanishing Chern number. We construct an explicit and natural model of a dissipativ
We investigate the three-level Dicke model, which describes a fundamental class of light-matter systems. We determine the phase diagram in the presence of dissipation, which we assume to derive from photon loss. Utilizing both analytical and numerica
We present a technique for detecting topological invariants -- Chern numbers -- from time-of-flight images of ultra-cold atoms. We show that the Chern numbers of integer quantum Hall states of lattice fermions leave their fingerprints in the atoms mo
Because global topological properties are robust against local perturbations, understanding and manipulating the topological properties of physical systems is essential in advancing quantum science and technology. For quantum computation, topological