ﻻ يوجد ملخص باللغة العربية
AIM: Large amplitude narrowband obliquely propagating whistler-mode waves at frequencies of ~0.2 fce (electron cyclotron frequency) are commonly observed at 1 AU, and are most consistent with the whistler heat flux fan instability. We want to determine whether similar whistler-mode waves occur inside 0.2 AU, and how their properties compare to those at 1 AU. METHODS: We utilize the waveform capture data from the Parker Solar Probe Fields instrument to develop a data base of narrowband whistler waves. The SWEAP instrument, in conjunction with the quasi-thermal noise measurement form Fields, provides the electron heat flux, beta, and other electron parameters. RESULTS: Parker Solar Probe observations inside ~0.3 AU show that the waves are more intermittent than at 1 AU, and are often interspersed with electrostatic whistler/Bernstein waves at higher frequencies. This is likely due to the more variable solar wind observed closer to the Sun. The whistlers usually occur within regions when the magnetic field is more variable and often with small increases in the solar wind speed. The near-sun whistler-mode waves are also narrowband and large amplitude, and associated with beta greater than 1. Wave angles are sometimes highly oblique (near the resonance cone), but angles have been determined for only a small fraction of the events. The association with heat flux and beta is generally consistent with the whistler fan instability although there are intervals where the heat flux is significantly lower than the instability limit. Strong scattering of strahl energy electrons is seen in association with the waves, providing evidence that the waves regulate the electron heat flux..
Observations of plasma waves by the Fields Suite and of electrons by the Solar Wind Electrons Alphas and Protons Investigation (SWEAP) on Parker Solar Probe provide strong evidence for pitch angle scattering of strahl-energy electrons by narrowband w
Energy supply sources for the heating process in the slow solar wind remain unknown. The Parker Solar Probe (PSP) mission provides a good opportunity to study this issue. Recently, PSP observations have found that the slow solar wind experiences stro
We discuss features of coronal mass ejections (CMEs) that are specific to heliospheric observations at large elongation angles. Our analysis is focused on a series of two eruptions that occurred on 2007 January 24-25, which were tracked by the Helios
Protons detected by the PAMELA experiment in the period 2006-2014 have been analyzed in the energy range between 0.40-50 GV to explore possible periodicities besides the well known solar undecennial modulation. An unexpected clear and regular feature
Stealth coronal mass ejection (CMEs) are eruptions from the Sun that are not associated with appreciable low-coronal signatures. Because they often cannot be linked to a well-defined source region on the Sun, analysis of their initial magnetic config