ﻻ يوجد ملخص باللغة العربية
The scattering of cosmic microwave background (CMB) photons off the free-electron gas in galaxies and clusters leaves detectable imprints on high resolution CMB maps: the thermal and kinematic Sunyaev-Zeldovich effects (tSZ and kSZ respectively). We use combined microwave maps from the Atacama Cosmology Telescope (ACT) DR5 and Planck in combination with the CMASS and LOWZ galaxy catalogs from the Baryon Oscillation Spectroscopic Survey (BOSS DR10 and DR12), to study the gas associated with these galaxy groups. Using individual reconstructed velocities, we perform a stacking analysis and reject the no-kSZ hypothesis at 6.5$sigma$, the highest significance to date. This directly translates into a measurement of the electron number density profile, and thus of the gas density profile. Despite the limited signal to noise, the measurement shows at high significance that the gas density profile is more extended than the dark matter density profile, for any reasonable baryon abundance (formally $>90sigma$ for the cosmic baryon abundance). We simultaneously measure the tSZ signal, i.e. the electron thermal pressure profile of the same CMASS objects, and reject the no-tSZ hypothesis at 10$sigma$. We combine tSZ and kSZ measurements to estimate the electron temperature to 20% precision in several aperture bins, and find it comparable to the virial temperature. In a companion paper, we analyze these measurements to constrain the gas thermodynamics and the properties of feedback inside galaxy groups. We present the corresponding LOWZ measurements in this paper, ruling out a null kSZ (tSZ) signal at 2.9 (13.9)$sigma$, and leave their interpretation to future work. Our stacking software ThumbStack is publicly available at https://github.com/EmmanuelSchaan/ThumbStack and directly applicable to future Simons Observatory and CMB-S4 data.
The thermal and kinematic Sunyaev-Zeldovich effects (tSZ, kSZ) probe the thermodynamic properties of the circumgalactic and intracluster medium (CGM and ICM) of galaxies, groups, and clusters, since they are proportional, respectively, to the integra
We present a new measurement of the kinematic Sunyaev-Zeldovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mea
Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component
We present high signal-to-noise measurements (up to 12$sigma$) of the average thermal Sunyaev Zeldovich (tSZ) effect from optically selected galaxy groups and clusters and estimate their baryon content within a 2.1$^prime$ radius aperture. Sources fr
We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 opticall