ﻻ يوجد ملخص باللغة العربية
Models for black hole (BH) formation from stellar evolution robustly predict the existence of a pair-instability supernova (PISN) mass gap in the range $sim50$ to $sim120$ solar masses. This theoretical prediction is supported by the binary black holes (BBHs) of LIGO/Virgos first two observing runs, whose component masses are well-fit by a power law with a maximum mass cutoff at $m_mathrm{max}=40.8^{+11.8}_{-4.4},M_odot$. Meanwhile, the BBH event GW190521 has a reported primary mass of $m_1=85^{+21}_{-14},M_odot$, firmly above the inferred $m_mathrm{max}$, and secondary mass $m_2=66^{+17}_{-18},M_odot$. Rather than concluding that both components of GW190521 belong to a new population of mass-gap BHs, we explore the conservative scenario in which GW190521s secondary mass belongs to the previously-observed population of BHs. We replace the default priors on $m_1$ and $m_2$, which assume that BH detector-frame masses are uniformly distributed, with this population-informed prior on $m_2$, finding $m_2<48,M_odot$ at 90% credibility. Moreover, because the total mass of the system is better constrained than the individual masses, the population prior on $m_2$ automatically increases the inferred $m_1$ to sit emph{above} the gap (39% for $m_1 > 120,M_odot$, or 25% probability for $m_1>130,M_odot$). As long as the prior odds for a double-mass-gap BBH are smaller than $sim 1:15$, it is more likely that GW190521 straddles the pair-instability gap. We argue that GW190521 may be the first example of a straddling binary black hole, composed of a conventional stellar mass BH and a BH from the ``far side of the PISN mass gap.
The gravitational-wave signal GW190521 is consistent with a binary black hole merger source at redshift 0.8 with unusually high component masses, $85^{+21}_{-14},M_{odot}$ and $66^{+17}_{-18},M_{odot}$, compared to previously reported events, and sho
The LIGO/Virgo Collaboration has recently observed GW190521, the first binary black hole merger with at least the primary component mass in the mass gap predicted by the pair-instability supernova theory. This observation disfavors the standard stell
Two of the dominant channels to produce the black-hole binary mergers observed by LIGO and Virgo are believed to be the isolated evolution of stellar binaries in the field and dynamical formation in star clusters. Their relative efficiency can be cha
With the black hole mass function (BHMF; assuming an exponential cutoff at a mass of $sim 40,M_odot$) of coalescing binary black hole systems constructed with the events detected in the O1 run of the advanced LIGO/Virgo network, Liang et al.(2017) pr
The recent gravitational wave transient GW190521 has been interpreted by the LIGO-Virgo collaboration (LVC) as sourced by a binary black hole (BH) merger. According to the LVC parameter estimation, at least one of these progenitors falls into the so-