We investigate the decline of infant mortality in 42 low and middle income countries (LMIC) using detailed micro data from 84 Demographic and Health Surveys. We estimate infant mortality risk for each infant in our data and develop a novel extension of Oaxaca decomposition to understand the sources of these changes. We find that the decline in infant mortality is due to a declining propensity for parents with given characteristics to experience the death of an infant rather than due to changes in the distributions of these characteristics over time. Our results suggest that technical progress and policy health interventions in the form of public goods are the main drivers of the the recent decline in infant mortality in LMIC.
In order to implement disease-specific interventions in young age groups, policy makers in low- and middle-income countries require timely and accurate estimates of age- and cause-specific child mortality. High quality data is not available in settin
gs where these interventions are most needed, but there is a push to create sample registration systems that collect detailed mortality information. Current methods that estimate mortality from this data employ multistage frameworks without rigorous statistical justification that separately estimate all-cause and cause-specific mortality and are not sufficiently adaptable to capture important features of the data. We propose a flexible Bayesian modeling framework to estimate age- and cause-specific child mortality from sample registration data. We provide a theoretical justification for the framework, explore its properties via simulation, and use it to estimate mortality trends using data from the Maternal and Child Health Surveillance System in China.
Reliable mortality estimates at the subnational level are essential in the study of health inequalities within a country. One of the difficulties in producing such estimates is the presence of small populations, where the stochastic variation in deat
h counts is relatively high, and so the underlying mortality levels are unclear. We present a Bayesian hierarchical model to estimate mortality at the subnational level. The model builds on characteristic age patterns in mortality curves, which are constructed using principal components from a set of reference mortality curves. Information on mortality rates are pooled across geographic space and smoothed over time. Testing of the model shows reasonable estimates and uncertainty levels when the model is applied to both simulated data which mimic US counties, and real data for French departments. The estimates produced by the model have direct applications to the study of subregional health patterns and disparities.
We propose a hierarchical Bayesian model to estimate the proportional contribution of source populations to a newly founded colony. Samples are derived from the first generation offspring in the colony, but mating may occur preferentially among migra
nts from the same source population. Genotypes of the newly founded colony and source populations are used to estimate the mixture proportions, and the mixture proportions are related to environmental and demographic factors that might affect the colonizing process. We estimate an assortative mating coefficient, mixture proportions, and regression relationships between environmental factors and the mixture proportions in a single hierarchical model. The first-stage likelihood for genotypes in the newly founded colony is a mixture multinomial distribution reflecting the colonizing process. The environmental and demographic data are incorporated into the model through a hierarchical prior structure. A simulation study is conducted to investigate the performance of the model by using different levels of population divergence and number of genetic markers included in the analysis. We use Markov chain Monte Carlo (MCMC) simulation to conduct inference for the posterior distributions of model parameters. We apply the model to a data set derived from grey seals in the Orkney Islands, Scotland. We compare our model with a similar model previously used to analyze these data. The results from both the simulation and application to real data indicate that our model provides better estimates for the covariate effects.
In recent years, much of the focus in monitoring child mortality has been on assessing changes in the under-five mortality rate (U5MR). However, as the U5MR decreases, the share of neonatal deaths (within the first month) tends to increase, warrantin
g increased efforts in monitoring this indicator in addition to the U5MR. A Bayesian splines regression model is presented for estimating neonatal mortality rates (NMR) for all countries. In the model, the relationship between NMR and U5MR is assessed and used to inform estimates, and spline regression models are used to capture country-specific trends. As such, the resulting NMR estimates incorporate trends in overall child mortality while also capturing data-driven trends. The model is fitted to 195 countries using the database from the United Nations Interagency Group for Child Mortality Estimation, producing estimates from 1990, or earlier if data are available, until 2015. The results suggest that, above a U5MR of 34 deaths per 1000 live births, at the global level, a 1 per cent increase in the U5MR leads to a 0.6 per cent decrease in the ratio of NMR to U5MR. Below a U5MR of 34 deaths per 1000 live births, the proportion of deaths under-five that are neonatal is constant at around 54 per cent. However, the relationship between U5MR and NMR varies across countries. The model has now been adopted by the United Nations Inter-agency Group for Child Mortality Estimation.
Forecasts of mortality provide vital information about future populations, with implications for pension and health-care policy as well as for decisions made by private companies about life insurance and annuity pricing. Stochastic mortality forecast
s allow the uncertainty in mortality predictions to be taken into consideration when making policy decisions and setting product prices. Longer lifespans imply that forecasts of mortality at ages 90 and above will become more important in such calculations. This paper presents a Bayesian approach to the forecasting of mortality that jointly estimates a Generalised Additive Model (GAM) for mortality for the majority of the age-range and a parametric model for older ages where the data are sparser. The GAM allows smooth components to be estimated for age, cohort and age-specific improvement rates, together with a non-smoothed period effect. Forecasts for the United Kingdom are produced using data from the Human Mortality Database spanning the period 1961-2013. A metric that approximates predictive accuracy under Leave-One-Out cross-validation is used to estimate weights for the `stacking of forecasts with different points of transition between the GAM and parametric elements. Mortality for males and females are estimated separately at first, but a joint model allows the asymptotic limit of mortality at old ages to be shared between sexes, and furthermore provides for forecasts accounting for correlations in period innovations. The joint and single sex model forecasts estimated using data from 1961-2003 are compared against observed data from 2004-2013 to facilitate model assessment.
Antonio P. Ramos
,Martin J. Flores
,Leiwen Gao
.
(2020)
.
"Explaining the Decline of Child Mortality in 44 Developing Countries: A Bayesian Extension of Oaxaca Decomposition Methods"
.
Antonio P. Ramos
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا