ﻻ يوجد ملخص باللغة العربية
Connecting a bulk materials microscopic defects to its macroscopic properties is an age-old problem in materials science. Long-range interactions between dislocations (line defects) are known to play a key role in how materials deform or melt, but we lack the tools to connect these dynamics to the macroscopic properties. We introduce time-resolved dark-field X-ray microscopy to directly visualize how dislocations move and interact over hundreds of micrometers, deep inside bulk aluminum. With real-time movies, we reveal the thermally-activated motion and interactions of dislocations that comprise a boundary, and show how weakened binding forces inhomogeneously destabilize the structure at 99% of the melting temperature. Connecting dynamics of the microstructure to its stability, we provide important opportunities to guide and validate multiscale models that are yet untested.
Individual dislocations in an ultra-pure GaAs epilayer are investigated with spatially and spectrally resolved photoluminescence imaging at 5~K. We find that some dislocations act as strong non-radiative recombination centers, while others are effici
We study the statistical properties of Ising spin chains with finite (although arbitrary large) range of interaction between the elements. We examine mesoscopic subsystems (fragments of an Ising chain) with the lengths comparable with the interaction
With optimal control theory, we compute the maximum possible quantum Fisher information about the interaction parameter for a Kitaev chain with tunable long-range interactions in the many-particle Hilbert space. We consider a wide class of decay laws
Hybrid structures synthesized from different materials have attracted considerable attention because they may allow not only combination of the functionalities of the individual constituents but also mutual control of their properties. To obtain such
In-situ NMR spin-lattice relaxation measurements were performed on several vapor deposited ices. The measurements, which span more than 6 orders of magnitude in relaxation times, show a complex spin-lattice relaxation pattern that is strongly depende