ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA Lensing Cluster Survey: an ALMA galaxy signposting a MUSE galaxy group at z=4.3 behind El Gordo

97   0   0.0 ( 0 )
 نشر من قبل Karina Caputi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a Multi Unit Spectroscopic Explorer (MUSE) galaxy group at z=4.32 lensed by the massive galaxy cluster ACT-CL J0102-4915 (aka El Gordo) at z=0.87, associated with a 1.2 mm source which is at a 2.07+/-0.88 kpc projected distance from one of the group galaxies. Three images of the whole system appear in the image plane. The 1.2 mm source has been detected within the Atacama Large Millimetre/submillimetre Array (ALMA) Lensing Cluster Survey (ALCS). As this ALMA source is undetected at wavelengths lambda < 2 microns, its redshift cannot be independently determined, however, the three lensing components indicate that it belongs to the same galaxy group at z=4.32. The four members of the MUSE galaxy group have low to intermediate stellar masses (~ 10^7-10^{10} Msun) and star formation rates (SFRs) of 0.4-24 Msun/yr, resulting in high specific SFRs (sSFRs) for two of them, which suggest that these galaxies are growing fast (with stellar-mass doubling times of only ~ 2x10^7 years). This high incidence of starburst galaxies is likely a consequence of interactions within the galaxy group, which is compact and has high velocity dispersion. Based on the magnification-corrected sub-/millimetre continuum flux density and estimated stellar mass, we infer that the ALMA source is classified as an ordinary ultra-luminous infrared galaxy (with associated dust-obscured SFR~200-300 Msun/yr) and lies on the star-formation main sequence. This reported case of an ALMA/MUSE group association suggests that some presumably isolated ALMA sources are in fact signposts of richer star-forming environments at high redshifts.

قيم البحث

اقرأ أيضاً

We present bright [CII] 158 $mu$m line detections from a strongly magnified and multiply-imaged ($musim20-160$) sub-$L^{*}$ ($M_{rm UV}$ = $-19.75^{+0.55}_{-0.44}$) Lyman-break galaxy (LBG) at $z=6.0719pm0.0004$ from the ALMA Lensing Cluster Survey ( ALCS). Emission lines are identified at 268.7 GHz at $geq$ 8$sigma$ exactly at positions of two multiple images of the LBG behind the massive galaxy cluster RXCJ0600$-$2007. Our lens models, updated with the latest spectroscopy from VLT/MUSE, indicate that a sub region of the LBG crosses the caustic and is lensed into a long ($sim6$) arc with a local magnification of $musim 160$, for which the [CII] line is also significantly detected. The source-plane reconstruction resolves the interstellar medium (ISM) structure, showing that the [CII] line is co-spatial with the rest-frame UV continuum at the scale of $sim$300 pc. The [CII] line properties suggest that the LBG is a rotation-dominated system whose velocity gradient explains a slight difference of redshifts between the whole LBG and its sub region. The star formation rate (SFR)-$L_{rm [CII]}$ relations from the sub to the whole regions of the LBG are consistent with those of local galaxies. We evaluate the lower limit of the faint-end of the [CII] luminosity function at $z=6$, and find that it is consistent with predictions from semi analytical models and from the local SFR-$L_{rm [CII]}$ relation with a SFR function at $z=6$. These results imply that the local SFR-$L_{rm [CII]}$ relation is universal for a wide range of scales including the spatially resolved ISM, the whole region of galaxy, and the cosmic scale, even in the epoch of reionization.
The distinctive cometary X-ray morphology of the recently discovered massive galaxy cluster El Gordo (ACT-CT J0102-4915; z=0.87) indicates that an unusually high-speed collision is ongoing between two massive galaxy clusters. A bright X-ray bullet le ads a twin-tailed wake, with the SZ centroid at the end of the Northern tail. We show how the physical properties of this system can be determined using our FLASH-based, N-body/hydrodynamic model, constrained by detailed X-ray, Sunyaev-Zeldovich (SZ), and Hubble lensing and dynamical data. The X-ray morphology and the location of the two Dark Matter components and the SZ peak are accurately described by a simple binary collision viewed about 480 million years after the first core passage. We derive an impact parameter of ~300 kpc, and a relative initial infall velocity of ~2250 km/sec when separated by the sum of the two virial radii assuming an initial total mass of 2.15x10^(15) Msun and a mass ratio of 1.9. Our model demonstrates that tidally stretched gas accounts for the Northern X-ray tail along the collision axis between the mass peaks, and that the Southern tail lies off axis, comprising compressed and shock heated gas generated as the massive component plunges through the main cluster. The challenge for LCDM will be to find out if this physically extreme event can be plausibly accommodated when combined with the similarly massive, high infall velocity case of the Bullet cluster and other such cases being uncovered in the new SZ based surveys.
81 - Congyao Zhang 2015
The observational features of the massive galaxy cluster El Gordo (ACT-CL J0102-4915), such as the X-ray emission, the Sunyaev-Zeldovich (SZ) effect, and the surface mass density distribution, indicate that they are caused by an exceptional ongoing h igh-speed collision of two galaxy clusters, similar to the well-known Bullet Cluster. We perform a series of hydrodynamical simulations to investigate the merging scenario and identify the initial conditions for the collision in ACT-CL J0102-4915. By surveying the parameter space of the various physical quantities that describe the two colliding clusters, including their total mass (M), mass ratio (xi), gas fractions (f_b), initial relative velocity (V), and impact parameter (P), we find out an off-axis merger with P~800h_{70}^{-1}kpc, V~2500km/s, M~3x10^{15}Msun, and xi=3.6 that can lead to most of the main observational features of ACT-CL J0102-4915. Those features include the morphology of the X-ray emission with a remarkable wake-like substructure trailing after the secondary cluster, the X-ray luminosity and the temperature distributions, and also the SZ temperature decrement. The initial relative velocity required for the merger is extremely high and rare compared to that inferred from currently available Lambda cold dark matter (LCDM) cosmological simulations, which raises a potential challenge to the LCDM model, in addition to the case of the Bullet Cluster.
We reveal the importance of ongoing in-situ star formation in the Brightest Cluster Galaxy in the massive cool-core CLASH cluster MACS 1931.8-2635 at z=0.35. Using a multi-wavelength approach, we assess the stellar and warm ionized medium components, spatially resolved by the VLT-MUSE spectroscopy, and link them to the molecular gas by incorporating sub-mm ALMA observations. We measure the fluxes of strong emission lines, allowing us to determine the physical conditions of the warm ionized gas. The ionized gas flux brightness peak corresponds to the location of the supermassive black hole and the system shows a diffuse warm ionized gas tail extending 30 kpc in N-E direction. The ionized and molecular gas are co-spatial and co-moving, with the gaseous component in the tail falling inward, providing fuel for star formation and accretion-powered nuclear activity. The gas is ionized by a mix of star formation and other energetic processes which give rise to LINER-like emission, with active galactic nuclei emission dominant only in the BCG core. We measure a star formation rate of 97 Msun/yr, with its peak at the BCG core. However, star formation accounts for only 50-60% of the energetics needed to ionize the warm gas. In situ star formation generated by thermally unstable intracluster medium cooling and/or dry mergers dominate the stellar mass growth at z<0.5 and these mechanisms account for the build-up of 20% of the mass of the system. Our measurements reveal that the most central regions of the BCG contain the lowest gas phase oxygen abundance, whereas the tail exhibits slightly more elevated values. The galaxy is a dispersion dominated system, typical for massive, elliptical galaxies. The gas and stellar kinematics are decoupled, with the gaseous velocity fields being more closely related to the bulk motions of the intracluster medium.
We present the results of ALMA spectroscopic follow-up of a $z=6.765$ Lyman-$alpha$ emitting galaxy behind the cluster RXJ1347-1145. We report the detection of [CII]158$mu$m line fully consistent with the Lyman-$alpha$ redshift and with the peak of t he optical emission. Given the magnification of $mu=5.0 pm 0.3$ the intrinsic (corrected for lensing) luminosity of the [CII] line is $L_{[CII]} =1.4^{+0.2}_{-0.3} times 10^7L_{odot}$, which is ${sim}5$ times fainter than other detections of $zsim 7$ galaxies. The result indicates that low $L_{[CII]}$ in $zsim 7$ galaxies compared to the local counterparts might be caused by their low metallicities and/or feedback. The small velocity off-set ($Delta v = 20_{-40}^{+140} rm km/s$) between the Lyman-$alpha$ and [CII] line is unusual, and may be indicative of ionizing photons escaping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا