ﻻ يوجد ملخص باللغة العربية
We predict that Lee-Huang-Yang effect makes it possible to create stable quantum droplets (QDs) in binary Bose-Einstein condensates with a hetero-symmetric or hetero-multipole structure, i.e., different vorticities or multipolarities in their components. The QDs feature flat-top shapes when either chemical potential mu_1,2 of the droplet approaches an edge of a triangular existence domain in the (mu_1,mu_2) plane. QDs with different vorticities of their components are stable against azimuthal perturbations, provided that the norm of one component is large. We also present multipole states, in which the interaction with a strong fundamental component balances the repulsion between poles with opposite signs in the other component, leading to the formation of stable bound states. Extended stability domains are obtained for dipole QDs; tripole ones exist but are unstable, while quadrupoles are stable in a narrow region. The results uncover the existence of much richer families of stable binary QDs in comparison to states with identical components.
We study the statistical mechanics and the dynamical relaxation process of modulationally unstable one-dimensional quantum droplets described by a modified Gross-Pitaevskii equation. To determine the classical partition function thereof, we leverage
We exemplify the impact of beyond Lee-Huang-Yang (LHY) physics, especially due to intercomponent correlations, in the ground state and the quench dynamics of one-dimensional so-called quantum droplets using an ab-initio nonperturbative approach. It i
The main theme of this review is the many-body physics of vortices in quantum droplets of bosons or fermions, in the limit of small particle numbers. Systems of interest include cold atoms in traps as well as electrons confined in quantum dots. When
A subtle balance between competing interactions in strongly correlated systems can be easily tipped by additional interfacial interactions in a heterostructure. This often induces exotic phases with unprecedented properties, as recently exemplified b
Recently achieved two-component dipolar Bose-Einstein condensates open exciting possibilities for the study of mixtures of ultra-dilute quantum liquids. While non-dipolar self-bound mixtures are necessarily miscible with an approximately fixed ratio