ﻻ يوجد ملخص باللغة العربية
In non-central high energy heavy ion collisions the colliding system posses a huge orbital angular momentum in the direction opposite to the normal of the reaction plane. Due to the spin-orbit coupling in strong interaction, such huge orbital angular momentum leads to the polarization of quarks and anti-quarks in the same direction. This effect, known as the global polarization effect, has been recently observed by STAR Collaboration at RHIC that confirms the theoretical prediction made more than ten years ago. The discovery has attracted much attention on the study of spin effects in heavy ion collision. It opens a new window to study properties of QGP and a new direction in high energy heavy ion physics -- Spin Physics in Heavy Ion Collisions. In this chapter, we review the original ideas and calculations that lead to the predictions. We emphasize the role played by spin-orbit coupling in high energy spin physics and discuss the new opportunities and challenges in this connection.
Global polarization of $Lambda$ and $bar{Lambda}$ is calculated based on the axial vortical effect (AVE). Simulations are performed within the model of the three-fluid dynamics. Equations of state with the deconfinement transition result in a good ag
Newly introduced equilibrium Wigner functions for particles with spin one-half are used in the semi-classical kinetic equations to study a possible relation between thermal vorticity and spin polarization. It is shown that in global equilibrium both
We investigate numerically the spin polarization of the current in the presence of Rashba spin-orbit interaction in a T-shaped conductor proposed by A.A. Kiselev and K.W. Kim (Appl. Phys. Lett. {bf 78} 775 (2001)). The recursive Green function method
Predictions for the global polarization of $Lambda$ hyperons in Au+Au collisions at moderately relativistic collision energies, 2.4 $leqsqrt{s_{NN}}leq$ 11 GeV, are made. These are based on the thermodynamic approach to the global polarization incorp
Spin-orbit coupling characterizes quantum systems such as atoms, nuclei, hypernuclei, quarkonia, etc., and is essential for understanding their spectroscopic properties. Depending on the system, the effect of spin-orbit coupling on shell structure is