ترغب بنشر مسار تعليمي؟ اضغط هنا

Global polarization effect and spin-orbit coupling in strong interaction

118   0   0.0 ( 0 )
 نشر من قبل Zuo-Tang Liang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In non-central high energy heavy ion collisions the colliding system posses a huge orbital angular momentum in the direction opposite to the normal of the reaction plane. Due to the spin-orbit coupling in strong interaction, such huge orbital angular momentum leads to the polarization of quarks and anti-quarks in the same direction. This effect, known as the global polarization effect, has been recently observed by STAR Collaboration at RHIC that confirms the theoretical prediction made more than ten years ago. The discovery has attracted much attention on the study of spin effects in heavy ion collision. It opens a new window to study properties of QGP and a new direction in high energy heavy ion physics -- Spin Physics in Heavy Ion Collisions. In this chapter, we review the original ideas and calculations that lead to the predictions. We emphasize the role played by spin-orbit coupling in high energy spin physics and discuss the new opportunities and challenges in this connection.

قيم البحث

اقرأ أيضاً

115 - Yu. B. Ivanov 2020
Global polarization of $Lambda$ and $bar{Lambda}$ is calculated based on the axial vortical effect (AVE). Simulations are performed within the model of the three-fluid dynamics. Equations of state with the deconfinement transition result in a good ag reement with STAR data for both $Lambda$ and $bar{Lambda}$ polarization, in particular, with the $Lambda$-$bar{Lambda}$ splitting. Suppression of the gravitational-anomaly contribution required for the data reproduction is in agreement with predictions of the QCD lattice simulations. Predictions for the global polarization in forthcoming experiments at lower collision energies are made. These forthcoming data will provide a critical test for the AVE and thermodynamic mechanisms of the polarization.
63 - Avdhesh Kumar 2018
Newly introduced equilibrium Wigner functions for particles with spin one-half are used in the semi-classical kinetic equations to study a possible relation between thermal vorticity and spin polarization. It is shown that in global equilibrium both the thermal-vorticity and spin polarization tensors are constant but not necessarily equal. In the case of local equilibrium, we define a procedure leading to hydrodynamic equations with spin. We introduce such equations for the de~Groot, van~Leeuwen, and van~Weert (GLW) formalism as well as for the canonical scheme (these two frameworks differ by the definitions of the energy-momentum and spin tensors). It is found that the GLW and canonica
We investigate numerically the spin polarization of the current in the presence of Rashba spin-orbit interaction in a T-shaped conductor proposed by A.A. Kiselev and K.W. Kim (Appl. Phys. Lett. {bf 78} 775 (2001)). The recursive Green function method is used to calculate the three terminal spin dependent transmission probabilities. We focus on single-channel transport and show that the spin polarization becomes nearly 100 % with a conductance close to $e^{2}/h$ for sufficiently strong spin-orbit coupling. This is interpreted by the fact that electrons with opposite spin states are deflected into an opposite terminal by the spin dependent Lorentz force. The influence of the disorder on the predicted effect is also discussed. Cases for multi-channel transport are studied in connection with experiments.
147 - Yu. B. Ivanov 2020
Predictions for the global polarization of $Lambda$ hyperons in Au+Au collisions at moderately relativistic collision energies, 2.4 $leqsqrt{s_{NN}}leq$ 11 GeV, are made. These are based on the thermodynamic approach to the global polarization incorp orated into the model of the three-fluid dynamics. Centrality dependence of the polarization is studied. It is predicted that the polarization reaches a maximum or a plateau (depending on the equation of state and centrality) at $sqrt{s_{NN}}approx$ 3 GeV. It is found that the global polarization increases with increasing width of the rapidity window around the midrapidity.
Spin-orbit coupling characterizes quantum systems such as atoms, nuclei, hypernuclei, quarkonia, etc., and is essential for understanding their spectroscopic properties. Depending on the system, the effect of spin-orbit coupling on shell structure is large in nuclei, small in quarkonia, perturbative in atoms. In the standard non-relativistic reduction of the single-particle Dirac equation, we derive a universal rule for the relative magnitude of the spin-orbit effect that applies to very different quantum systems, regardless of whether the spin-orbit coupling originates from the strong or electromagnetic interaction. It is shown that in nuclei the near equality of the mass of the nucleon and the difference between the large repulsive and attractive potentials explains the fact that spin-orbit splittings are comparable to the energy spacing between major shells. For a specific ratio between the particle mass and the effective potential whose gradient determines the spin-orbit force, we predict the occurrence of giant spin-orbit energy splittings that dominate the single-particle excitation spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا