ترغب بنشر مسار تعليمي؟ اضغط هنا

Modified Gravitation Theory (MOG) and the aLIGO GW190521 Gravitational Wave Event

75   0   0.0 ( 0 )
 نشر من قبل John W. Moffat
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. W. Moffat




اسأل ChatGPT حول البحث

A consequence of adopting a modified gravitational theory (MOG) for the aLIGO GW190521 gravitational wave detection involving binary black hole sources is to fit the aLIGO strain and chirp data with lower mass, compact coalescing binary systems such as neutron star-neutron star (NS-NS), black hole - neutron star (BH-NS), and black hole-black hole (BH-BH) systems. In MOG BH - BH component masses can be smaller than the component masses $m_1=85M_odot$ and $m_2=66M_odot$ inferred from the aLIGO GW190521 gravitational wave event. This reduces the mass of the final remnant mass $M_f=150M_odot$ and allows the primary, secondary and final remnant masses of the black holes to be formed by conventional stellar collapse models.

قيم البحث

اقرأ أيضاً

Taking up four model universes we study the behaviour and contribution of dark energy to the accelerated expansion of the universe, in the modified scale covariant theory of gravitation. Here, it is seen that though this modified theory may be a caus e of the accelerated expansion it cannot totally outcast the contribution of dark energy in causing the accelerated expansion. In one case the dark energy is found to be the sole cause of the accelerated expansion. The dark energy contained in these models come out to be of the $Lambda$CDM type and quintessence type comparable to the modern observations. Some of the models originated with a big bang, the dark energy being prevalent inside the universe before the evolution of this era. One of the models predicts big rip singularity, though at a very distant future. It is interestingly found that the interaction between the dark energy and the other part of the universe containing different matters is enticed and enhanced by the gauge function $phi(t)$ here.
Advanced LIGO data contains numerous noise transients, or glitches, that have been shown to reduce the sensitivity of matched filter searches for gravitational waves from compact binaries by increasing the rate at which random coincidences occur. The presence of these transients has precipitated extensive work to establish that observed gravitational wave events are astrophysical in nature. We discuss the response of the PyCBC search for gravitational waves from stellar mass binaries to various common glitches that were observed during Advanced LIGOs first and second observing runs. We show how these transients can mimic waveforms from compact binary coalescences and quantify the likelihood that a given class of glitches will create a trigger in the search pipeline. We explore the specific waveform parameters that are most similar to different glitch classes and demonstrate how knowledge of these similarities can be used when evaluating the significance of gravitational-wave candidates.
105 - J. W. Moffat 2020
A covariant modified gravity (MOG) is formulated by adding to general relativity two new degrees of freedom, a scalar field gravitational coupling strength $G= 1/chi$ and a gravitational spin 1 vector field $phi_mu$. The $G$ is written as $G=G_N(1+al pha)$ where $G_N$ is Newtons constant, and the gravitational source charge for the vector field is $Q_g=sqrt{alpha G_N}M$, where $M$ is the mass of a body. Cosmological solutions of the theory are derived in a homogeneous and isotropic cosmology. Black holes in MOG are stationary as the end product of gravitational collapse and are axisymmetric solutions with spherical topology. It is shown that the scalar field $chi$ is constant everywhere for an isolated black hole with asymptotic flat boundary condition. A consequence of this is that the scalar field loses its monopole moment radiation.
It is shown that, in the framework of Relativistic Theory of Gravitation with massive graviton, gravitational waves, due to the causality condition, do not bear negative energy flows.
Studies of dark energy at advanced gravitational-wave (GW) interferometers normally focus on the dark energy equation of state $w_{rm DE}(z)$. However, modified gravity theories that predict a non-trivial dark energy equation of state generically als o predict deviations from general relativity in the propagation of GWs across cosmological distances, even in theories where the speed of gravity is equal to $c$. We find that, in generic modified gravity models, the effect of modified GW propagation dominates over that of $w_{rm DE}(z)$, making modified GW propagation a crucial observable for dark energy studies with standard sirens. We present a convenient parametrization of the effect in terms of two parameters $(Xi_0,n)$, analogue to the $(w_0,w_a)$ parametrization of the dark energy equation of state, and we give a limit from the LIGO/Virgo measurement of $H_0$ with the neutron star binary GW170817. We then perform a Markov Chain Monte Carlo analysis to estimate the sensitivity of the Einstein Telescope (ET) to the cosmological parameters, including $(Xi_0,n)$, both using only standard sirens, and combining them with other cosmological datasets. In particular, the Hubble parameter can be measured with an accuracy better than $1%$ already using only standard sirens while, when combining ET with current CMB+BAO+SNe data, $Xi_0$ can be measured to $0.8%$ . We discuss the predictions for modified GW propagation of a specific nonlocal modification of gravity, recently developed by our group, and we show that they are within the reach of ET. Modified GW propagation also affects the GW transfer function, and therefore the tensor contribution to the ISW effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا