The estimate based on the parton model is made on the rate of production of Super Heavy Particle ( SHP ) in subthreshold collision of heavy ions at LHC. For the one month run of lead-lead collision the yield of 16 TeV particle is of the order of 70 per year.
Study of thermal particle production is crucial to understand the space-time evolution of the fireball produced in high energy heavy-ion collisions. We consider thermal particle production within the framework of relativistic viscous hydrodynamics an
d employ recently obtained analytical solutions of higher-order viscous hydrodynamics with longitudinal Bjorken expansion to calculate the spectra of dileptons and photons. Using these analytical solutions, we constrain the allowed initial states by demanding positivity and reality of energy density throughout the evolution. Further, we compute thermal particle spectra and study the particle yield in context of hydrodynamic attractors. We find that, of all allowed solutions, the evolution corresponding to attractor solution leads to maximum production of thermal particles.
Transverse momentum spectra of charged particle production in heavy-ion collisions are considered in terms of a recently introduced Two Component parameterization combining exponential (soft) and power-law (hard) functional forms. The charged hadron
densities calculated separately for them are plotted versus number of participating nucleons, $N_{part}$. The obtained dependences are discussed and the possible link between the two component parameterization introduced by the authors and the two component model historically used for the case of heavy-ion collisions is established. Next, the variations of the parameters of the introduced approach with the center of mass energy and centrality are studied using the available data from RHIC and LHC experiments. The spectra shapes are found to show universal dependences on $N_{part}$ for all investigated collision energies.
We study the charged particle and transverse energy production mechanism from AGS, SPS, RHIC to LHC energies in the framework of nucleon and quark participants. At RHIC and LHC energies, the number of nucleons-normalized charged particle and transver
se energy density in pseudorapidity, which shows a monotonic rise with centrality, turns out to be an almost centrality independent scaling behaviour when normalized to the number of participant quarks. A universal function which is a combination of logarithmic and power-law, describes well the charged particle and transverse energy production both at nucleon and quark participant level for the whole range of collision energies. Energy dependent production mechanisms are discussed both for nucleonic and partonic level. Predictions are made for the pseudorapidity densities of transverse energy, charged particle multiplicity and their ratio (the barometric observable, $frac{dE_{rm{T}}/deta}{dN_{rm{ch}}/deta} ~equiv frac{E_{rm{T}}}{N_{rm{ch}}}$) at mid-rapidity for Pb+Pb collisions at $sqrt{s_{rm{NN}}}=5.5$ TeV. A comparison with models based on gluon saturation and statistical hadron gas is made for the energy dependence of $frac{E_{rm{T}}}{N_{rm{ch}}}$.
Modelling Quark-Gluon Plasma formation and decay in high energy heavy ion reactions is presented in a framework of a multi-module setup. The collective features, governing the equlibrated fluid dynamical stages of the model are emphasized. Flow effec
ts formed from the initial conditions are discussed. Particular attention is given to the improvement of the final hadronization and freeze-out part of the reaction which has strong effects on the observables.
We review the charged particle and photon multiplicity, and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at differ
ent collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons and the transverse energy measurement.