ﻻ يوجد ملخص باللغة العربية
High-precision space-based photometry obtained by the emph{Kepler} and emph{TESS} missions has revealed evidence of rotational modulation associated with main sequence (MS) A and late-B type stars. Generally, such variability in these objects is attributed to inhomogeneous surface structures (e.g. chemical spots), which are typically linked to strong magnetic fields ($Bgtrsim100,{rm G}$) visible at the surface. It has been reported that $approx44$~per~cent of all A-type stars observed during the emph{Kepler} mission exhibit rotationally modulated light curves. This is surprising considering that $lesssim10$~per~cent of all MS A-type stars are known to be strongly magnetic (i.e. they are Ap/Bp stars). We present a spectroscopic monitoring survey of 44 A and late-B type stars reported to exhibit rotational modulation in their emph{Kepler} light curves. The primary goal of this survey is to test the hypothesis that the variability is rotational modulation by comparing each stars rotational broadening ($vsin{i}$) with the equatorial velocities ($v_{rm eq}$) inferred from the photometric periods. We searched for chemical peculiarities and binary companions in order to provide insight into the origin of the apparent rotational modulation. We find that 14 stars in our sample have $vsin{i}>v_{rm eq}$ and/or have low-mass companions that may contribute to or be responsible for the observed variability. Our results suggest that more than $10$~per~cent of all MS A and late-B type stars may exhibit inhomogeneous surface structures; however, the incidence rate is likely $lesssim30$~per~cent.
This work brings a wavelet analysis for 14 Kepler white dwarf stars, in order to confirm their photometric variability behavior and to search for periodicities in these targets. From the observed Kepler light curves we obtained the wavelet local and
A recent analysis of high precision photometry obtained using the Kepler spacecraft has revealed two surprising discoveries: (1) over 860 main sequence A-type stars -- approximately 40% of those identified in the Kepler field -- exhibit periodic vari
The Kepler spacecraft is providing photometric time series with micro-magnitude precision for thousands of variable stars. The continuous time-series of unprecedented time span open up opportunities to study the pulsational variability in much more d
The analysis of the light curves of 48 B-type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies characteristic of SPB stars. Seven of these stars also show a few weak, isolated high frequenci
The Kepler space mission provided near-continuous and high-precision photometry of about 207,000 stars, which can be used for asteroseismology. However, for successful seismic modelling it is equally important to have accurate stellar physical parame