ﻻ يوجد ملخص باللغة العربية
Bell inequalities are mathematical constructs that demarcate the boundary between quantum and classical physics. A new class of multiplicative Bell inequalities originating from a volume maximization game (based on products of correlators within bipartite systems) has been recently proposed. For these new Bell parameters, it is relatively easy to find the classical and quantum, i.e. Tsirelson, limits. Here, we experimentally test the Tsirelson bounds of these inequalities using polarisation-entangled photons for different number of measurements ($n$), each party can perform. For $n=2, 3, 4$, we report the experimental violation of local hidden variable theories. In addition, we experimentally compare the results with the parameters obtained from a fully deterministic strategy, and observe the conjectured nature of the ratio. Finally, utilizing the principle of relativistic independence encapsulating the locality of uncertainty relations, we theoretically derive and experimentally test new richer bounds for both the multiplicative and the additive Bell parameters for $n=2$. Our findings strengthen the correspondence between local and nonlocal correlations, and may pave the way for empirical tests of quantum mechanical bounds with inefficient detection systems.
Bell inequalities are important tools in contrasting classical and quantum behaviors. To date, most Bell inequalities are linear combinations of statistical correlations between remote parties. Nevertheless, finding the classical and quantum mechanic
The violation of a Bell inequality is the paradigmatic example of device-independent quantum information: the nonclassicality of the data is certified without the knowledge of the functioning of devices. In practice, however, all Bell experiments rel
We report on the experimental violation of multipartite Bell inequalities by entangled states of trapped ions. First we consider resource states for measurement-based quantum computation of between 3 and 7 ions and show that all strongly violate a Be
We apply a distance-based Bell-test analysis method [E. Knill et al., Phys. Rev. A. 91, 032105 (2015)] to three experimental data sets where conventional analyses failed or required additional assumptions. The first is produced from a new classical s
A technique, which we call homogenization, is applied to transform CH-type Bell inequalities, which contain lower order correlations, into CHSH-type Bell inequalities, which are defined for highest order correlation functions. A homogenization leads