ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating gamma-ray production from cosmic rays interacting with the solar atmosphere in the presence of coronal magnetic fields

75   0   0.0 ( 0 )
 نشر من قبل Zhe Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic rays can interact with the solar atmosphere and produce a slew of secondary messengers, making the Sun a bright gamma-ray source in the sky. Detailed observations with Fermi-LAT have shown that these interactions must be strongly affected by solar magnetic fields in order to produce the wide range of observational features, such as high flux and hard spectrum. However, the detailed mechanisms behind these features are still a mystery. In this work, we tackle this problem by performing particle-interaction simulations in the solar atmosphere in the presence of coronal magnetic fields modeled using the potential field source surface (PFSS) model. We find that the low-energy (~GeV) gamma-ray production is significantly enhanced by the coronal magnetic fields, but the enhancement decreases rapidly with energy. The enhancement is directly correlated with the production of gamma rays with large deviation angles relative to the input cosmic-ray direction. We conclude that coronal magnetic fields are essential for correctly modeling solar disk gamma rays below 10GeV, but above that the effect of coronal magnetic fields diminishes. Other magnetic field structures are needed to explain the high-energy disk emission.



قيم البحث

اقرأ أيضاً

The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filament s and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic ray propagation have largely overlooked intermittency, instead relying on Gaussian random magnetic fields. Using test particle simulations, we investigate cosmic ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.
113 - T. Arlen , T. Aune , M. Beilicke 2012
Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated, suggesting that clusters may also be sources of very high-energy (VHE; E>100 GeV) gamma-ray emission. We repor t here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cherenkov telescopes, with complementing Fermi-LAT observations at GeV energies. No significant gamma-ray emission from the Coma cluster was detected. Integral flux upper limits at the 99% confidence level were measured to be on the order of (2-5)*10^-8 ph. m^-2 s^-1 (VERITAS, >220 GeV} and ~2*10^-6 ph. m^-2 s^-1 (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain CRs and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be < 16% from VERITAS data and < 1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be <50%. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of (2 - 5.5) muG, depending on the radial magnetic-field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this {renders} the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark-matter (DM) dominated, the VERITAS upper limits have been used to place constraints on the thermally-averaged product of the total self-annihilation cross section and the relative velocity of the DM particles, <sigma v>. (abr.)
320 - G. Di Sciascio 2016
LHAASO is expected to be the most sensitive project to face the open problems in Galactic cosmic ray physics through a combined study of photon- and charged particle-induced extensive air showers in the energy range 10$^{11}$ - 10$^{17}$ eV. This new generation multi-component experiment will be able of continuously surveying the gamma-ray sky for steady and transient sources from about 100 GeV to PeV energies, thus opening for the first time the 10$^2$--10$^3$ TeV range to the direct observations of the high energy cosmic ray sources. In addition, the different observables (electronic, muonic and Cherenkov components) that will be measured in LHAASO will allow the study of the origin, acceleration and propagation of the radiation through a measurement of energy spectrum, elemental composition and anisotropy with unprecedented resolution. The installation of the experiment started at very high altitude in China (Daocheng site, Sichuan province, 4410 m a.s.l.). The commissioning of one fourth of the detector will be implemented in 2018. The completion of the installation is expected by the end of 2021.
Solar energetic particles acceleration by a shock wave accompanying a coronal mass ejection (CME) is studied. The description of the accelerated particle spectrum evolution is based on the numerical calculation of the diffusive transport equation wit h a set of realistic parameters. The relation between the CME and the shock speeds, which depend on the initial CME radius, is determined. Depending on the initial CME radius, its speed, and the magnetic energy of the scattering Alfven waves, the accelerated particle spectrum is established during 10-60 minutes from the beginning of CME motion. The maximum energies of particles reach 0.1-10 GeV. The CME radii of 3-5 $R_odot$ and the shock radii of 5-10 $R_odot$ agree with observations. The calculated particle spectra agree with the observed ones in events registered by ground-based detectors if the turbulence spectrum in the solar corona significantly differs from the Kolmogorov one.
Various studies have implied the existence of a gaseous halo around the Galaxy extending out to 100 kpc. Galactic cosmic rays (CRs) that propagate to the halo, either by diffusion or by convection with the possibly existing large-scale Galactic wind, can interact with the gas therein and produce gamma-rays via proton-proton collision. We calculate the cosmic ray distribution in the halo and the gamma-ray flux, and explore the dependence of the result on model parameters such as diffusion coefficient, CR luminosity, CR spectral index. We find that the current measurement of isotropic gamma-ray background at $lesssim$TeV with Fermi Large Area Telescope already approaches a level that can provide interesting constraints on the properties of Galactic cosmic ray (e.g., with CR luminosity $L_{CR}leq 10^{41}$erg/s). We also discuss the possibilities of the Fermi bubble and IceCube neutrinos originating from the proton-proton collision between cosmic rays and gas in the halo, as well as the implication of our results for the baryon budget of the hot circumgalactic medium of our Galaxy. Given that the isotropic gamma-ray background is likely to be dominated by unresolved extragalactic sources, future telescopes may extract more individual sources from the IGRB, and hence put even more stringent restriction on the relevant quantities (such as Galactic cosmic ray luminosity and baryon budget in the halo) in the presence of a turbulent halo that we consider.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا