ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation-based inference of dynamical galaxy cluster masses with 3D convolutional neural networks

94   0   0.0 ( 0 )
 نشر من قبل Doogesh Kodi Ramanah
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simulation-based inference framework using a convolutional neural network to infer dynamical masses of galaxy clusters from their observed 3D projected phase-space distribution, which consists of the projected galaxy positions in the sky and their line-of-sight velocities. By formulating the mass estimation problem within this simulation-based inference framework, we are able to quantify the uncertainties on the inferred masses in a straightforward and robust way. We generate a realistic mock catalogue emulating the Sloan Digital Sky Survey (SDSS) Legacy spectroscopic observations (the main galaxy sample) for redshifts $z lesssim 0.09$ and explicitly illustrate the challenges posed by interloper (non-member) galaxies for cluster mass estimation from actual observations. Our approach constitutes the first optimal machine learning-based exploitation of the information content of the full 3D projected phase-space distribution, including both the virialized and infall cluster regions, for the inference of dynamical cluster masses. We also present, for the first time, the application of a simulation-based inference machinery to obtain dynamical masses of around $800$ galaxy clusters found in the SDSS Legacy Survey, and show that the resulting mass estimates are consistent with mass measurements from the literature.

قيم البحث

اقرأ أيضاً

We present an algorithm for inferring the dynamical mass of galaxy clusters directly from their respective phase-space distributions, i.e. the observed line-of-sight velocities and projected distances of galaxies from the cluster centre. Our method e mploys normalizing flows, a deep neural network capable of learning arbitrary high-dimensional probability distributions, and inherently accounts, to an adequate extent, for the presence of interloper galaxies which are not bounded to a given cluster, the primary contaminant of dynamical mass measurements. We validate and showcase the performance of our neural flow approach to robustly infer the dynamical mass of clusters from a realistic mock cluster catalogue. A key aspect of our novel algorithm is that it yields the probability density function of the mass of a particular cluster, thereby providing a principled way of quantifying uncertainties, in contrast to conventional machine learning approaches. The neural network mass predictions, when applied to a contaminated catalogue with interlopers, have a mean overall logarithmic residual scatter of 0.028 dex, with a log-normal scatter of 0.126 dex, which goes down to 0.089 dex for clusters in the intermediate to high mass range. This is an improvement by nearly a factor of four relative to the classical cluster mass scaling relation with the velocity dispersion, and outperforms recently proposed machine learning approaches. We also apply our neural flow mass estimator to a compilation of galaxy observations of some well-studied clusters with robust dynamical mass estimates, further substantiating the efficacy of our algorithm.
243 - Xiaosheng Zhao 2021
Tomographic three-dimensional 21 cm images from the epoch of reionization contain a wealth of information about the reionization of the intergalactic medium by astrophysical sources. Conventional power spectrum analysis cannot exploit the full inform ation in the 21 cm data because the 21 cm signal is highly non-Gaussian due to reionization patchiness. We perform a Bayesian inference of the reionization parameters where the likelihood is implicitly defined through forward simulations using density estimation likelihood-free inference (DELFI). We adopt a trained 3D Convolutional Neural Network (CNN) to compress the 3D image data into informative summaries (DELFI-3D CNN). We show that this method recovers accurate posterior distributions for the reionization parameters. Our approach outperforms earlier analysis based on two-dimensional 21 cm images. In contrast, an MCMC analysis of the 3D lightcone-based 21 cm power spectrum alone and using a standard explicit likelihood approximation results in inaccurate credible parameter regions both in terms of the location and shape of the contours. Our proof-of-concept study implies that the DELFI-3D CNN can effectively exploit more information in the 3D 21 cm images than a 2D CNN or power spectrum analysis. This technique can be readily extended to include realistic effects and is therefore a promising approach for the scientific interpretation of future 21 cm observation data.
Galaxy clusters appear as extended sources in XMM-Newton images, but not all extended sources are clusters. So, their proper classification requires visual inspection with optical images, which is a slow process with biases that are almost impossible to model. We tackle this problem with a novel approach, using convolutional neural networks (CNNs), a state-of-the-art image classification tool, for automatic classification of galaxy cluster candidates. We train the networks on combined XMM-Newton X-ray observations with their optical counterparts from the all-sky Digitized Sky Survey. Our data set originates from the X-CLASS survey sample of galaxy cluster candidates, selected by a specially developed pipeline, the XAmin, tailored for extended source detection and characterisation. Our data set contains 1 707 galaxy cluster candidates classified by experts. Additionally, we create an official Zooniverse citizen science project, The Hunt for Galaxy Clusters, to probe whether citizen volunteers could help in a challenging task of galaxy cluster visual confirmation. The project contained 1 600 galaxy cluster candidates in total of which 404 overlap with the experts sample. The networks were trained on expert and Zooniverse data separately. The CNN test sample contains 85 spectroscopically confirmed clusters and 85 non-clusters that appear in both data sets. Our custom network achieved the best performance in the binary classification of clusters and non-clusters, acquiring accuracy of 90 %, averaged after 10 runs. The results of using CNNs on combined X-ray and optical data for galaxy cluster candidate classification are encouraging and there is a lot of potential for future usage and improvements.
A statistical analysis of the observed perturbations in the density of stellar streams can in principle set stringent contraints on the mass function of dark matter subhaloes, which in turn can be used to constrain the mass of the dark matter particl e. However, the likelihood of a stellar density with respect to the stream and subhaloes parameters involves solving an intractable inverse problem which rests on the integration of all possible forward realisations implicitly defined by the simulation model. In order to infer the subhalo abundance, previous analyses have relied on Approximate Bayesian Computation (ABC) together with domain-motivated but handcrafted summary statistics. Here, we introduce a likelihood-free Bayesian inference pipeline based on Amortised Approximate Likelihood Ratios (AALR), which automatically learns a mapping between the data and the simulator parameters and obviates the need to handcraft a possibly insufficient summary statistic. We apply the method to the simplified case where stellar streams are only perturbed by dark matter subhaloes, thus neglecting baryonic substructures, and describe several diagnostics that demonstrate the effectiveness of the new method and the statistical quality of the learned estimator.
We present a neural-network emulator for baryonic effects in the non-linear matter power spectrum. We calibrate this emulator using more than 50,000 measurements in a 15-dimensional parameters space, varying cosmology and baryonic physics. Baryonic p hysics is described through a baryonification algorithm, that has been shown to accurately capture the relevant effects on the power spectrum and bispectrum in state-of-the-art hydrodynamical simulations. Cosmological parameters are sampled using a cosmology-rescaling approach including massive neutrinos and dynamical dark energy. The specific quantity we emulate is the ratio between matter power spectrum with baryons and gravity-only, and we estimate the overall precision of the emulator to be 1-2%, at all scales 0.01 < k < 5 h/Mpc, and redshifts 0 < z < 1.5. We also obtain an accuracy of 1-2%, when testing the emulator against a collection of 74 different cosmological hydrodynamical simulations and their respective gravity-only counterparts. We show also that only one baryonic parameter, namely Mc, which set the gas fraction retained per halo mass, is enough to have accurate and realistic predictions of the baryonic feedback at a given epoch. Our emulator will become publicly available in http://www.dipc.org/bacco.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا