ﻻ يوجد ملخص باللغة العربية
We present a simulation-based inference framework using a convolutional neural network to infer dynamical masses of galaxy clusters from their observed 3D projected phase-space distribution, which consists of the projected galaxy positions in the sky and their line-of-sight velocities. By formulating the mass estimation problem within this simulation-based inference framework, we are able to quantify the uncertainties on the inferred masses in a straightforward and robust way. We generate a realistic mock catalogue emulating the Sloan Digital Sky Survey (SDSS) Legacy spectroscopic observations (the main galaxy sample) for redshifts $z lesssim 0.09$ and explicitly illustrate the challenges posed by interloper (non-member) galaxies for cluster mass estimation from actual observations. Our approach constitutes the first optimal machine learning-based exploitation of the information content of the full 3D projected phase-space distribution, including both the virialized and infall cluster regions, for the inference of dynamical cluster masses. We also present, for the first time, the application of a simulation-based inference machinery to obtain dynamical masses of around $800$ galaxy clusters found in the SDSS Legacy Survey, and show that the resulting mass estimates are consistent with mass measurements from the literature.
We present an algorithm for inferring the dynamical mass of galaxy clusters directly from their respective phase-space distributions, i.e. the observed line-of-sight velocities and projected distances of galaxies from the cluster centre. Our method e
Tomographic three-dimensional 21 cm images from the epoch of reionization contain a wealth of information about the reionization of the intergalactic medium by astrophysical sources. Conventional power spectrum analysis cannot exploit the full inform
Galaxy clusters appear as extended sources in XMM-Newton images, but not all extended sources are clusters. So, their proper classification requires visual inspection with optical images, which is a slow process with biases that are almost impossible
A statistical analysis of the observed perturbations in the density of stellar streams can in principle set stringent contraints on the mass function of dark matter subhaloes, which in turn can be used to constrain the mass of the dark matter particl
We present a neural-network emulator for baryonic effects in the non-linear matter power spectrum. We calibrate this emulator using more than 50,000 measurements in a 15-dimensional parameters space, varying cosmology and baryonic physics. Baryonic p