ﻻ يوجد ملخص باللغة العربية
Quantum advantage, benchmarking the computational power of quantum machines outperforming all classical computers in a specific task, represents a crucial milestone in developing quantum computers and has been driving different physical implementations since the concept was proposed. Boson sampling machine, an analog quantum computer that only requires multiphoton interference and single-photon detection, is considered to be a promising candidate to reach this goal. However, the probabilistic nature of photon sources and inevitable loss in evolution network make the execution time exponentially increasing with the problem size. Here, we propose and experimentally demonstrate a timestamp boson sampling that can reduce the execution time by 2 orders of magnitude for any problem size. We theoretically show that the registration time of sampling events can be retrieved to reconstruct the probability distribution at an extremely low-flux rate. By developing a time-of-flight storage technique with a precision up to picosecond level, we are able to detect and record the complete time information of 30 individual modes out of a large-scale 3D photonic chip. We successfully validate boson sampling with only one registered event. We show that it is promptly applicable to fill the remained gap of realizing quantum advantage by timestamp boson sampling. The approach associated with newly exploited resource from time information can boost all the count-rate-limited experiments, suggesting an emerging field of timestamp quantum optics.
Quantum computation, aiming at tackling hard problems beyond classical approaches, has been flourishing with each passing day. Unfortunately, a fully scalable and fault-tolerant universal quantum computer remains challenging based on the current tech
Quantum computer, harnessing quantum superposition to boost a parallel computational power, promises to outperform its classical counterparts and offer an exponentially increased scaling. The term quantum advantage was proposed to mark the key point
The tantalizing promise of quantum computational speedup in solving certain problems has been strongly supported by recent experimental evidence from a high-fidelity 53-qubit superconducting processor1 and Gaussian boson sampling (GBS) with up to 76
A boson sampling device is a specialised quantum computer that solves a problem which is strongly believed to be computationally hard for classical computers. Recently a number of small-scale implementations have been reported, all based on multi-pho
Universal quantum computers promise a dramatic speed-up over classical computers but a full-size realization remains challenging. However, intermediate quantum computational models have been proposed that are not universal, but can solve problems tha