ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting neutral hydrogen at z > 3 in large spectroscopic surveys of quasars

78   0   0.0 ( 0 )
 نشر من قبل Michele Fumagalli
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a pipeline based on a random forest classifier for the identification of high column-density clouds of neutral hydrogen (i.e. the Lyman limit systems, LLSs) in absorption within large spectroscopic surveys of z>3 quasars. We test the performance of this method on mock quasar spectra that reproduce the expected data quality of the Dark Energy Spectroscopic Instrument (DESI) and the WHT Enhanced Area Velocity Explorer (WEAVE) surveys, finding >90% completeness and purity for N(HI)> 10^17.2 cm^-2 LLSs against quasars of g < 23 mag at z~3.5-3.7. After training and applying our method on 10,000 quasar spectra at z~3.5-4.0 from the Sloan Digital Sky Survey (Data Release 16), we identify ~6600 LLSs with N(HI)>10^17.5 cm^-2 between z~3.1-4.0 with a completeness and purity of >90% for the classification of LLSs. Using this sample, we measure a number of LLSs per unit redshift of 2.32 +/- 0.08 at z=[3.3,3.6]. We also present results on the performance of random forest for the measurement of the LLS redshifts and HI column densities, and for the identification of broad absorption line quasars.

قيم البحث

اقرأ أيضاً

We use a large N-body simulation to examine the detectability of HI in emission at redshift z ~ 1, and the constraints imposed by current observations on the neutral hydrogen mass function of galaxies at this epoch. We consider three different models for populating dark matter halos with HI, designed to encompass uncertainties at this redshift. These models are consistent with recent observations of the detection of HI in emission at z ~ 0.8. Whilst detection of 21 cm emission from individual halos requires extremely long integrations with existing radio interferometers, such as the Giant Meter Radio Telescope (GMRT), we show that the stacked 21 cm signal from a large number of halos can be easily detected. However, the stacking procedure requires accurate redshifts of galaxies. We show that radio observations of the field of the DEEP2 spectroscopic galaxy redshift survey should allow detection of the HI mass function at the 5-12 sigma level in the mass range 10^(11.4) M_sun/h < M_halo < 10^(12.5)M_sun/h, with a moderate amount of observation time. Assuming a larger noise level that corresponds to an upper bound for the expected noise for the GMRT, the detection significance for the HI mass function is still at the 1.7-3 sigma level. We find that optically undetected satellite galaxies enhance the HI emission profile of the parent halo, leading to broader wings as well as a higher peak signal in the stacked profile of a large number of halos. We show that it is in principle possible to discern the contribution of undetected satellites to the total HI signal, even though cosmic variance limitation make this challenging for some of our models.
We investigate the relation between star formation rates ($dot{M}_{s}$) and AGN properties in optically selected type 1 quasars at $2<z<3$ using data from Herschel and the SDSS. We find that $dot{rm{M}}_s$ remains approximately constant with redshift , at $300pm100~rm{M}_{odot}$yr$^{-1}$. Conversely, $dot{rm{M}}_s$ increases with AGN luminosity, up to a maximum of $sim600~rm{M}_{odot}$yr$^{-1}$, and with CIV FWHM. In context with previous results, this is consistent with a relation between $dot{rm{M}}_s$ and black hole accretion rate ($dot{rm{M}}_{bh}$) existing in only parts of the $z-dot{rm{M}}_{s}-dot{rm{M}}_{bh}$ plane, dependent on the free gas fraction, the trigger for activity, and the processes that may quench star formation. The relations between $dot{rm{M}}_s$ and both AGN luminosity and CIV FWHM are consistent with star formation rates in quasars scaling with black hole mass, though we cannot rule out a separate relation with black hole accretion rate. Star formation rates are observed to decline with increasing CIV equivalent width. This decline can be partially explained via the Baldwin effect, but may have an additional contribution from one or more of three factors; $M_i$ is not a linear tracer of L$_{2500}$, the Baldwin effect changes form at high AGN luminosities, and high CIV EW values signpost a change in the relation between $dot{rm{M}}_s$ and $dot{rm{M}}_{bh}$. Finally, there is no strong relation between $dot{rm{M}}_s$ and Eddington ratio, or the asymmetry of the CIV line. The former suggests that star formation rates do not scale with how efficiently the black hole is accreting, while the latter is consistent with CIV asymmetries arising from orientation effects.
Upcoming 21-cm intensity surveys will use the hyperfine transition in emission to map out neutral hydrogen in large volumes of the universe. Unfortunately, large spatial scales are completely contaminated with spectrally smooth astrophysical foregrou nds which are orders of magnitude brighter than the signal. This contamination also leaks into smaller radial and angular modes to form a foreground wedge, further limiting the usefulness of 21-cm observations for different science cases, especially cross-correlations with tracers that have wide kernels in the radial direction. In this paper, we investigate reconstructing these modes within a forward modeling framework. Starting with an initial density field, a suitable bias parameterization and non-linear dynamics to model the observed 21-cm field, our reconstruction proceeds by combining the likelihood of a forward simulation to match the observations (under given modeling error and a data noise model) with the Gaussian prior on initial conditions and maximizing the obtained posterior. For redshifts $z=2$ and $4$, we are able to reconstruct 21cm field with cross correlation, $r_c > 0.8$ on all scales for both our optimistic and pessimistic assumptions about foreground contamination and for different levels of thermal noise. The performance deteriorates slightly at $z=6$. The large-scale line-of-sight modes are reconstructed almost perfectly. We demonstrate how our method also reconstructs baryon acoustic oscillations, outperforming standard methods on all scales. We also describe how our reconstructed field can provide superb clustering redshift estimation at high redshifts, where it is otherwise extremely difficult to obtain dense spectroscopic samples, as well as open up cross-correlation opportunities with projected fields (e.g. lensing) which are restricted to modes transverse to the line of sight.
568 - G.A. Khorunzhev 2017
We present the results of optical spectroscopy for 19 quasar candidates at photometric redshifts $zphot gtrsim 3$, Nobs of which enter into the Khorunzhev et al.~(2016) catalog (K16). This is a catalog of quasar candidates and known type 1 quasars s elected among the X-ray sources of the textit{3XMM-DR4}catalog of the XMM-Newton serendipitous survey. We have performed spectroscopy for a quasi-random sample of new candidates at the 1.6-m Azt telescope of the Sayan Solar Observatory and the 6-m BTA telescope of the Special Astrophysical Observatory. The spectra at Azt were taken with the new low- and medium-resolution ADAM spectrograph that was produced and installed on the telescope in 2015. Fourteen of the Nobs candidates actually have turned out to be quasars; 10 of them are at spectroscopic redshifts z > 3. The high purity of the sample of new candidates suggests that the purity of the entire K16 catalog of quasars is probably 70--80%. One of the most distant ($zspec=5.08$) optically bright ($i^primelesssim 21$) quasars ever detected in X-ray surveys has been discovered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا