ترغب بنشر مسار تعليمي؟ اضغط هنا

Interstellar nitrile anions: Detection of C3N- and C5N- in TMC-1

110   0   0.0 ( 0 )
 نشر من قبل Marcelino Agundez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the first detection of C3N- and C5N- towards the cold dark core TMC-1 in the Taurus region, using the Yebes 40 m telescope. The observed C3N/C3N- and C5N/C5N- abundance ratios are 140 and 2, respectively; that is similar to those found in the circumstellar envelope of the carbon-rich star IRC+10216. Although the formation mechanisms for the neutrals are different in interstellar (ion-neutral reactions) and circumstellar clouds (photodissociation and radical-neutral reactions), the similarity of the C3N/C3N- and C5N/C5N- abundance ratios strongly suggests a common chemical path for the formation of these anions in interstellar and circumstellar clouds. We discuss the role of radiative electronic attachment, reactions between N atoms and carbon chain anions Cn-, and that of H- reactions with HC3N and HC5N as possible routes to form CnN-. The detection of C5N- in TMC-1 gives strong support for assigning to this anion the lines found in IRC+10216, as it excludes the possibility of a metal-bearing species, or a vibrationally excited state. New sets of rotational parameters have been derived from the observed frequencies in TMC-1 and IRC+10216 for C5N- and the neutral radical C5N.

قيم البحث

اقرأ أيضاً

We report an astronomical detection of HC$_4$NC for the first time in the interstellar medium with the Green Bank Telescope toward the TMC-1 molecular cloud with a minimum significance of $10.5 sigma$. The total column density and excitation temperat ure of HC$_4$NC are determined to be $3.29^{+8.60}_{-1.20}times 10^{11}$ cm$^{-2}$ and $6.7^{+0.3}_{-0.3}$ K, respectively, using the MCMC analysis. In addition to HC$_4$NC, HCCNC is distinctly detected whereas no clear detection of HC$_6$NC is made. We propose that the dissociative recombination of the protonated cyanopolyyne, HC$_5$NH$^+$, and the protonated isocyanopolyyne, HC$_4$NCH$^+$, are the main formation mechanisms for HC$_4$NC while its destruction is dominated by reactions with simple ions and atomic carbon. With the proposed chemical networks, the observed abundances of HC$_4$NC and HCCNC are reproduced satisfactorily.
We present an overview of the GOTHAM (GBT Observations of TMC-1: Hunting Aromatic Molecules) Large Program on the Green Bank Telescope. This and a related program were launched to explore the depth and breadth of aromatic chemistry in the interstella r medium at the earliest stages of star formation, following our earlier detection of benzonitrile ($c$-C$_6$H$_5$CN) in TMC-1. In this work, details of the observations, use of archival data, and data reduction strategies are provided. Using these observations, the interstellar detection of propargyl cyanide (HCCCH$_2$CN) is described, as well as the accompanying laboratory spectroscopy. We discuss these results, and the survey project as a whole, in the context of investigating a previously unexplored reservoir of complex, gas-phase molecules in pre-stellar sources. A series of companion papers describe other new astronomical detections and analyses.
Using radio observations with the Green Bank Telescope, evidence has now been found for a second five-membered ring in the dense cloud Taurus Molecular Cloud-1 (TMC-1). Based on additional observations of an ongoing, large-scale, high-sensitivity spe ctral line survey (GOTHAM) at centimeter wavelengths toward this source, we have used a combination of spectral stacking, Markov chain Monte Carlo (MCMC), and matched filtering techniques to detect 2-cyanocyclopentadiene, a low-lying isomer of 1-cyanocyclopentadiene, which was recently discovered there by the same methods. The new observational data also yields a considerably improved detection significance for the more stable isomer and evidence for several individual transitions between 23 - 32 GHz. Through our MCMC analysis, we derive total column densities of $8.3times10^{11}$ and $1.9times10^{11}$ cm$^{-2}$ for 1- and 2-cyanocyclopentadiene respectively, corresponding to a ratio of 4.4(6) favoring the former. The derived abundance ratios point towards a common formation pathway - most likely being cyanation of cyclopentadiene by analogy to benzonitrile.
Interstellar Polycyclic Aromatic Hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the ISM. Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a Density Functional Theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 {mu}m region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.
We report the first detection in space of the single deuterated isotopologue of methylcyanoacetylene, CH$_2$DC$_3$N. A total of fifteen rotational transitions, with $J$ = 8-12 and $K_a$ = 0 and 1, were identified for this species in TMC-1 in the 31.0 -50.4 GHz range using the Yebes 40m radio telescope. The observed frequencies were used to derive for the first time the spectroscopic parameters of this deuterated isotopologue. We derive a column density of $(8.0pm 0.4) times 10^{10}$ cm$^{-2}$. The abundance ratio between CH$_3$C$_3$N and CH$_2$DC$_3$N is $sim$22. We also theoretically computed the principal spectroscopic constants of $^{13}$C isotopologues of CH$_3$C$_3$N and CH$_3$C$_4$H and those of the deuterated isotopologues of CH$_3$C$_4$H for which we could expect a similar degree of deuteration enhancement. However, we have not detected either CH$_2$DC$_4$H nor CH$_3$C$_4$D nor any $^{13}$C isotopologue. The different observed deuterium ratios in TMC-1 are reasonably accounted for by a gas phase chemical model where the low temperature conditions favor deuteron transfer through reactions with H$_2$D$^+$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا