ترغب بنشر مسار تعليمي؟ اضغط هنا

An End-to-end Architecture of Online Multi-channel Speech Separation

114   0   0.0 ( 0 )
 نشر من قبل Jian Wu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-speaker speech recognition has been one of the keychallenges in conversation transcription as it breaks the singleactive speaker assumption employed by most state-of-the-artspeech recognition systems. Speech separation is consideredas a remedy to this problem. Previously, we introduced a sys-tem, calledunmixing,fixed-beamformerandextraction(UFE),that was shown to be effective in addressing the speech over-lap problem in conversation transcription. With UFE, an inputmixed signal is processed by fixed beamformers, followed by aneural network post filtering. Although promising results wereobtained, the system contains multiple individually developedmodules, leading potentially sub-optimum performance. In thiswork, we introduce an end-to-end modeling version of UFE. Toenable gradient propagation all the way, an attentional selectionmodule is proposed, where an attentional weight is learnt foreach beamformer and spatial feature sampled over space. Ex-perimental results show that the proposed system achieves com-parable performance in an offline evaluation with the originalseparate processing-based pipeline, while producing remark-able improvements in an online evaluation.



قيم البحث

اقرأ أيضاً

Hand-crafted spatial features (e.g., inter-channel phase difference, IPD) play a fundamental role in recent deep learning based multi-channel speech separation (MCSS) methods. However, these manually designed spatial features are hard to incorporate into the end-to-end optimized MCSS framework. In this work, we propose an integrated architecture for learning spatial features directly from the multi-channel speech waveforms within an end-to-end speech separation framework. In this architecture, time-domain filters spanning signal channels are trained to perform adaptive spatial filtering. These filters are implemented by a 2d convolution (conv2d) layer and their parameters are optimized using a speech separation objective function in a purely data-driven fashion. Furthermore, inspired by the IPD formulation, we design a conv2d kernel to compute the inter-channel convolution differences (ICDs), which are expected to provide the spatial cues that help to distinguish the directional sources. Evaluation results on simulated multi-channel reverberant WSJ0 2-mix dataset demonstrate that our proposed ICD based MCSS model improves the overall signal-to-distortion ratio by 10.4% over the IPD based MCSS model.
We describe Parrotron, an end-to-end-trained speech-to-speech conversion model that maps an input spectrogram directly to another spectrogram, without utilizing any intermediate discrete representation. The network is composed of an encoder, spectrog ram and phoneme decoders, followed by a vocoder to synthesize a time-domain waveform. We demonstrate that this model can be trained to normalize speech from any speaker regardless of accent, prosody, and background noise, into the voice of a single canonical target speaker with a fixed accent and consistent articulation and prosody. We further show that this normalization model can be adapted to normalize highly atypical speech from a deaf speaker, resulting in significant improvements in intelligibility and naturalness, measured via a speech recognizer and listening tests. Finally, demonstrating the utility of this model on other speech tasks, we show that the same model architecture can be trained to perform a speech separation task
101 - Keyu An , Zhijian Ou 2021
Recently, the end-to-end training approach for neural beamformer-supported multi-channel ASR has shown its effectiveness in multi-channel speech recognition. However, the integration of multiple modules makes it more difficult to perform end-to-end t raining, particularly given that the multi-channel speech corpus recorded in real environments with a sizeable data scale is relatively limited. This paper explores the usage of single-channel data to improve the multi-channel end-to-end speech recognition system. Specifically, we design three schemes to exploit the single-channel data, namely pre-training, data scheduling, and data simulation. Extensive experiments on CHiME4 and AISHELL-4 datasets demonstrate that all three methods improve the multi-channel end-to-end training stability and speech recognition performance, while the data scheduling approach keeps a much simpler pipeline (vs. pre-training) and less computation cost (vs. data simulation). Moreover, we give a thorough analysis of our systems, including how the performance is affected by the choice of front-end, the data augmentation, training strategy, and single-channel data size.
103 - Yukun Liu , Ta Li , Pengyuan Zhang 2021
Recently neural architecture search(NAS) has been successfully used in image classification, natural language processing, and automatic speech recognition(ASR) tasks for finding the state-of-the-art(SOTA) architectures than those human-designed archi tectures. NAS can derive a SOTA and data-specific architecture over validation data from a pre-defined search space with a search algorithm. Inspired by the success of NAS in ASR tasks, we propose a NAS-based ASR framework containing one search space and one differentiable search algorithm called Differentiable Architecture Search(DARTS). Our search space follows the convolution-augmented transformer(Conformer) backbone, which is a more expressive ASR architecture than those used in existing NAS-based ASR frameworks. To improve the performance of our method, a regulation method called Dynamic Search Schedule(DSS) is employed. On a widely used Mandarin benchmark AISHELL-1, our best-searched architecture outperforms the baseline Conform model significantly with about 11% CER relative improvement, and our method is proved to be pretty efficient by the search cost comparisons.
Recently, Transformer has gained success in automatic speech recognition (ASR) field. However, it is challenging to deploy a Transformer-based end-to-end (E2E) model for online speech recognition. In this paper, we propose the Transformer-based onlin e CTC/attention E2E ASR architecture, which contains the chunk self-attention encoder (chunk-SAE) and the monotonic truncated attention (MTA) based self-attention decoder (SAD). Firstly, the chunk-SAE splits the speech into isolated chunks. To reduce the computational cost and improve the performance, we propose the state reuse chunk-SAE. Sencondly, the MTA based SAD truncates the speech features monotonically and performs attention on the truncated features. To support the online recognition, we integrate the state reuse chunk-SAE and the MTA based SAD into online CTC/attention architecture. We evaluate the proposed online models on the HKUST Mandarin ASR benchmark and achieve a 23.66% character error rate (CER) with a 320 ms latency. Our online model yields as little as 0.19% absolute CER degradation compared with the offline baseline, and achieves significant improvement over our prior work on Long Short-Term Memory (LSTM) based online E2E models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا