ﻻ يوجد ملخص باللغة العربية
Groundwater depletion impacts the sustainability of numerous groundwater-dependent vegetation (GDV) globally, placing significant stress on their capacity to provide environmental and ecological support for flora, fauna, and anthropic benefits. Industries such as mining, agriculture, and plantations are heavily reliant on groundwater, the over-exploitation of which risks impacting groundwater regimes, quality, and accessibility for nearby GDVs. Cost effective methods of GDV identification will enable strategic protection of these critical ecological systems, through improved and sustainable groundwater management by communities and industry. Recent application of synthetic aperture radar (SAR) earth observation data in Australia has demonstrated the utility of radar for identifying terrestrial groundwater-dependent ecosystems at scale. We propose a robust classification method to advance identification of GDVs at scale using processed SAR data products adapted from a recent previous method. The method includes the development of SARGDV, a binary classification model, which uses the extreme gradient boosting (XGBoost) algorithm in conjunction with three data cubes composed of Sentinel-1 SAR interferometric wide images. The images were collected as a one-year time series over Mount Gambier, a region in South Australia, known to support GDVs. The SARGDV model demonstrated high performance for classifying GDVs with 77% precision, 76% true positive rate and 96% accuracy. This method may be used to support the protection of GDV communities globally by providing a long term, cost-effective solution to identify GDVs over variable regions and climates, via the use of freely available, high-resolution, globally available Sentinel-1 SAR data sets.
Many researches have been carried out for change detection using temporal SAR images. In this paper an algorithm for change detection using SAR videos has been proposed. There are various challenges related to SAR videos such as high level of speckle
Change detection from synthetic aperture radar (SAR) imagery is a critical yet challenging task. Existing methods mainly focus on feature extraction in spatial domain, and little attention has been paid to frequency domain. Furthermore, in patch-wise
Although deep learning has achieved great success in image classification tasks, its performance is subject to the quantity and quality of training samples. For classification of polarimetric synthetic aperture radar (PolSAR) images, it is nearly imp
Data and data sources have become increasingly essential in recent decades. Scientists and researchers require more data to deploy AI approaches as the field continues to improve. In recent years, the rapid technological advancements have had a signi
Synthetic Aperture Radar (SAR) imaging systems operate by emitting radar signals from a moving object, such as a satellite, towards the target of interest. Reflected radar echoes are received and later used by image formation algorithms to form a SAR