ﻻ يوجد ملخص باللغة العربية
Transition metal dichalcogenides (TMDs) are van der Waals layered materials with sizable and tunable bandgaps, offering promising platforms for two-dimensional electronics and optoelectronics. To this end, the bottleneck is how to acquire high-quality single crystals in a facile and efficient manner. As one of the most widely employed method of single-crystal growth, conventional chemical vapor transport (CVT) generally encountered problems including the excess nucleation that leads to small crystal clusters and slow growth rate. To address these issues, a seed crystal is introduced to suppress the nucleation and an inner tube is adopted as both a separator and a flow restrictor, favoring the growth of large-size and high-quality TMD single crystals successfully. Three examples are presented, the effective growth of millimeter-sized MoSe2 and MoTe2 single crystals, and the greatly shortened growth period for PtSe2 single crystal, all of which are synthesized in high quality according to detailed characterizations. The mechanism of seeded CVT is discussed. Furthermore, a phototransistor based on exfoliated multi-layered MoSe2 displays excellent photoresponse in ambient conditions, and considerably rapid rise and fall time of 110 and 125 us are obtained. This work paves the way for developing a facile and versatile method to synthesize high-quality TMD single crystals in laboratory, which could serve as favorable functional materials for potential low-dimensional optoelectronics.
In the crystal growth of transition metal dichalcogenides by the Chemical Vapor Transport method (CVT), the choice of the transport agent plays a key role. We have investigated the effect of various chemical elements and compounds on the growth of Ti
Growth of two-dimensional van der Waals layered single-crystal (SC) films is highly desired to manifest intrinsic material sciences and unprecedented devices for industrial applications. While wafer-scale SC hexagonal boron nitride film has been succ
We report the growth of large single-crystals of Cu2MnAl, a ferromagnetic Heusler compound suitable for polarizing neutron monochromators, by means of optical floating zone under ultra-high vacuum compatible conditions. Unlike Bridgman or Czochralsky
Van der Waals epitaxy on the surface of two-dimensional (2D) layered crystals has gained significant research interest for the assembly of well-ordered nanostructures and fabrication of vertical heterostructures based on 2D crystals. Although van der
The usage of molten salts, e.g., Na2MoO4 and Na2WO4, has shown great success in the growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs) by chemical vapor deposition (CVD). In comparison with the halide salt (i.e., NaCl, NaBr, KI)-