ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast optical melting of trimer superstructure in layered 1T-TaTe2

224   0   0.0 ( 0 )
 نشر من قبل Daniel Durham
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quasi-two-dimensional transition metal dichalcogenides (TMDs) are a key platform for exploring emergent nanoscale phenomena arising from complex interactions. Access to the underlying degrees of freedom on their natural time scales motivates the use of advanced ultrafast probes that directly couple to the self-organised electronic and atomic structural order. Here, we report the first ultrafast investigation of TaTe2, which exhibits unique charge and lattice structural order characterised by a transition upon cooling from stripe-like trimer chains into a $(3 times 3)$ superstructure of trimer clusters. Utilising MeV-scale ultrafast electron diffraction, the TaTe2 structural dynamics is resolved following intense pulsed laser excitation at 1.2 eV. We observe a rapid $approx!1.4$ ps melting of the low-temperature ordered state, followed by recovery of the clusters via thermalisation into a hot superstructure persisting for extended times. Density-functional calculations indicate that the initial quench is triggered by Ta trimer bonding to nonbonding transitions that destabilises the clusters, unlike melting of charge density waves in other TaX2 compounds. Our work paves the way for further exploration and ultimately directed manipulation of the trimer superstructure for novel applications.



قيم البحث

اقرأ أيضاً

Using ab initio methods based on density functional theory, the electronic and magnetic structure of layered hexagonal NbSe$_{2}$ is studied. In the case of single-layer NbSe$_{2}$ it is found that, for all the functionals considered, the magnetic so lution is lower in energy than the non-magnetic solution. The magnetic ground-state is ferrimagnetic with a magnetic moment of 1.09 $mu_{B}$ at the Nb atoms and a magnetic moment of 0.05 $mu_{B}$, in the opposite direction, at the Se atoms. Our calculations show that single-layer NbSe$_{2}$ does not display a charge density wave instability unless a graphene layer is considered as a substrate. Then, two kinds of 3$times$3 charge density waves are found, which are observed in our STM experiments. This suggest that the driving force of charge instabilities in NbSe$_{2}$ differ in bulk and in the single-layer limit. Our work sets magnetism into play in this highly-correlated 2D material, which is crucial to understand the formation mechanisms of 2D superconductivity and charge density wave order.
Laser-induced nonthermal melting in semiconductors has been studied for several decades, but the melting mechanism is still under debate. Based on real-time time-dependent density functional theory (rt-TDDFT) simulation, we reveal that the rapid nont hermal melting induced by photoexcitation in silicon originates from a local dynamic instability rather than a homogeneous inertial mechanism. Due to this local dynamic instability, any initial small random displacements can be amplified, create a local self-trapping mechanism for the excited carrier. This carrier self-trapping will amplify the initial randomness, cause locally nonthermal melting spots. Such locally melted spots gradually diffuse to the whole system achieving overall nonthermal melting within 200 fs. We also found that the initial hot carrier cooling towards the anti-bonding state is essential in order to realize this dynamic instability. This causes different cooling time depending on the excitation laser frequency, in accordance with the experimental observations. Our study provides an exquisite detail for the nonthermal melting mechanism.
243 - Yuki Fuseya , Masao Ogata , 2011
A mechanism is proposed based on the Kubo formula to generate a spin-polarized magneto-optical current of Dirac electrons in solids which have strong spin-orbit interactions such as bismuth. The ac current response functions are calculated in the iso tropic Wolff model under an external magnetic field, and the selection rules for Dirac electrons are obtained. By using the circularly polarized light and tuning its frequency, one can excite electrons concentrated in the spin-polarized lowest Landau level when the chemical potential locates in the band gap, so that spin-polarization in the magneto-optical current can be achieved.
112 - L. Luo , X. Yang , X. Liu 2018
The recent discovery of topology-protected charge transport of ultimate thinness on surfaces of three-dimensional topological insulators (TIs) are breaking new ground in fundamental quantum science and transformative technology. Yet a challenge remai ns on how to isolate and disentangle helical spin transport on the surface from bulk conduction. Here we show that selective midinfrared femtosecond photoexcitation of exclusive intraband electronic transitions at low temperature underpins topological enhancement of terahertz (THz) surface transport in doped Bi2Se3, with no complication from interband excitations or need for controlled doping. The unique, hot electron state is characterized by conserved populations of surface/bulk bands and by frequency-dependent hot carrier cooling times that directly distinguish the faster surface channel than the bulk. We determine the topological enhancement ratio between bulk and surface scattering rates, i.e., $gamma_text{BS}/gamma_text{SS}sim$3.80 in equilibrium. These behaviors are absent at elevated lattice temperatures and for high pumpphoton frequencies and uences. The selective, mid-infrared-induced THz conductivity provides a new paradigm to characterize TIs and may apply to emerging topological semimetals in order to separate the transport connected with the Weyl nodes from other bulk bands.
Dirac states hosted by Sb/Bi square nets are known to exist in the layered antiferromagnetic AMnX$_2$ (A = Ca/Sr/Ba/Eu/Yb, X=Sb/Bi) material family the space group to be P4/nmm or I4/mmm. In this paper, we present a comprehensive study of quantum tra nsport behaviors, angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations on SrZnSb2, a nonmagnetic analogue to AMnX2, which crystallizes in the pnma space group with distorted square nets. From the quantum oscillation measurements up to 35 T, three major frequencies including F$_1$ = 103 T, F$_2$ = 127 T and F$_3$ = 160 T, are identified. The effective masses of the quasiparticles associated with these frequencies are extracted, namely, m*$_1$ = 0.1 m$_e$, m*$_2$ = 0.1 m$_e$ and m*$_3$ = 0.09m$_e$, where m$_e$ is the free electron mass. From the three-band Lifshitz-Kosevich fit, the Berry phases accumulated along the cyclotron orbit of the quasiparticles are 0.06$pi$, 1.2$pi$ and 0.74$pi$ for F$_1$, F$_2$ and F$_3$, respectively. Combined with the ARPES data and the first-principles calculations, we reveal that F2 and F3 are associated with the two nontrivial Fermi pockets at the Brillouin zone edge while F1 is associated with the trivial Fermi pocket at the zone center. In addition, the first-principles calculations further suggest the existence of Dirac nodal line in the band structure of SrZnSb$_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا