ترغب بنشر مسار تعليمي؟ اضغط هنا

A subexponential size triangulation of $mathbb{R}P^n$

305   0   0.0 ( 0 )
 نشر من قبل Sergey Avvakumov
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We address a long-standing and long-investigated problem in combinatorial topology, and break the exponential barrier for triangulations of real projective space, constructing a trianglation of $mathbb{RP}^n$ of size $e^{(frac{1}{2}+o(1))sqrt{n}{log n}}$.

قيم البحث

اقرأ أيضاً

Let $S subset mathbb{R}^{n}$ be a~closed set such that for some $d in [0,n]$ and $varepsilon > 0$ the~$d$-Hausdorff content $mathcal{H}^{d}_{infty}(S cap Q(x,r)) geq varepsilon r^{d}$ for all cubes~$Q(x,r)$ centered in~$x in S$ with side length $2r i n (0,2]$. For every $p in (1,infty)$, denote by $W_{p}^{1}(mathbb{R}^{n})$ the classical Sobolev space on $mathbb{R}^{n}$. We give an~intrinsic characterization of the restriction $W_{p}^{1}(mathbb{R}^{n})|_{S}$ of the space $W_{p}^{1}(mathbb{R}^{n})$ to~the set $S$ provided that $p > max{1,n-d}$. Furthermore, we prove the existence of a bounded linear operator $operatorname{Ext}:W_{p}^{1}(mathbb{R}^{n})|_{S} to W_{p}^{1}(mathbb{R}^{n})$ such that $operatorname{Ext}$ is right inverse for the usual trace operator. In particular, for $p > n-1$ we characterize the trace space of the Sobolev space $W_{p}^{1}(mathbb{R}^{n})$ to the closure $overline{Omega}$ of an arbitrary open path-connected set~$Omega$. Our results extend those available for $p in (1,n]$ with much more stringent restrictions on~$S$.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into good an d bad parts and then prove the following real interpolation theorem between the variable Hardy space $H^{p(cdot)}(mathbb R^n)$ and the space $L^{infty}(mathbb R^n)$: begin{equation*} (H^{p(cdot)}(mathbb R^n),L^{infty}(mathbb R^n))_{theta,infty} =W!H^{p(cdot)/(1-theta)}(mathbb R^n),quad thetain(0,1), end{equation*} where $W!H^{p(cdot)/(1-theta)}(mathbb R^n)$ denotes the variable weak Hardy space. As an application, the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$ with $p_-:=mathopmathrm{ess,inf}_{xinrn}p(x)in(1,infty)$ is proved to coincide with the variable Lebesgue space $W!L^{p(cdot)}(mathbb R^n)$.
192 - Alexander Tyulenev 2021
Let $S subset mathbb{R}^{n}$ be an arbitrary nonempty compact set such that the $d$-Hausdorff content $mathcal{H}^{d}_{infty}(S) > 0$ for some $d in (0,n]$. For each $p in (max{1,n-d},n]$ an almost sharp intrinsic description of the trace space $W_{p }^{1}(mathbb{R}^{n})|_{S}$ of the Sobolev space $W_{p}^{1}(mathbb{R}^{n})$ is given. Furthermore, for each $p in (max{1,n-d},n]$ and $varepsilon in (0, min{p-(n-d),p-1})$ new bounded linear extension operators from the trace space $W_{p}^{1}(mathbb{R}^{n})|_{S}$ into the space $W_{p-varepsilon}^{1}(mathbb{R}^{n})$ are constructed.
We compute the $GL_{r+1}$-equivariant Chow class of the $GL_{r+1}$-orbit closure of any point $(x_1, ldots, x_n) in (mathbb{P}^r)^n$ in terms of the rank polytope of the matroid represented by $x_1, ldots, x_n in mathbb{P}^r$. Using these classes and generalizations involving point configurations in higher dimensional projective spaces, we define for each $dtimes n$ matrix $M$ an $n$-ary operation $[M]_hbar$ on the small equivariant quantum cohomology ring of $mathbb{P}^r$, which is the $n$-ary quantum product when $M$ is an invertible matrix. We prove that $M mapsto [M]_hbar$ is a valuative matroid polytope association. Like the quantum product, these operations satisfy recursive properties encoding solutions to enumerative problems involving point configurations of given moduli in a relative setting. As an application, we compute the number of line sections with given moduli of a general degree $2r+1$ hypersurface in $mathbb{P}^r$, generalizing the known case of quintic plane curves.
We propose a new theory of (non-split) P^n-functors. These are F: A -> B for which the adjunction monad RF is a repeated extension of Id_A by powers of an autoequivalence H and three conditions are satisfied: the monad condition, the adjoints conditi on, and the highest degree term condition. This unifies and extends the two earlier notions of spherical functors and split P^n-functors. We construct the P-twist of such F and prove it to be an autoequivalence. We then give a criterion for F to be a P^n-functor which is stronger than the definition but much easier to check in practice. It involves only two conditions: the strong monad condition and the weak adjoints condition. For split P^n-functors, we prove Segals conjecture on their relation to spherical functors. Finally, we give four examples of non-split P^n-functors: spherical functors, extensions by zero, cyclic covers, and family P-twists. For the latter, we show the P-twist to be the derived monodromy of associated Mukai flop, the so-called `flop-flop = twist formula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا