ترغب بنشر مسار تعليمي؟ اضغط هنا

BANANA at WNUT-2020 Task 2: Identifying COVID-19 Information on Twitter by Combining Deep Learning and Transfer Learning Models

83   0   0.0 ( 0 )
 نشر من قبل Tin Huynh Van
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The outbreak COVID-19 virus caused a significant impact on the health of people all over the world. Therefore, it is essential to have a piece of constant and accurate information about the disease with everyone. This paper describes our prediction system for WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets. The dataset for this task contains size 10,000 tweets in English labeled by humans. The ensemble model from our three transformer and deep learning models is used for the final prediction. The experimental result indicates that we have achieved F1 for the INFORMATIVE label on our systems at 88.81% on the test set.

قيم البحث

اقرأ أيضاً

We describe our system for WNUT-2020 shared task on the identification of informative COVID-19 English tweets. Our system is an ensemble of various machine learning methods, leveraging both traditional feature-based classifiers as well as recent adva nces in pre-trained language models that help in capturing the syntactic, semantic, and contextual features from the tweets. We further employ pseudo-labelling to incorporate the unlabelled Twitter data released on the pandemic. Our best performing model achieves an F1-score of 0.9179 on the provided validation set and 0.8805 on the blind test-set.
We present a corpus of 7,500 tweets annotated with COVID-19 events, including positive test results, denied access to testing, and more. We show that our corpus enables automatic identification of COVID-19 events mentioned in Twitter with text spans that fill a set of pre-defined slots for each event. We also present analyses on the self-reporting cases and users demographic information. We will make our annotated corpus and extraction tools available for the research community to use upon publication at https://github.com/viczong/extract_COVID19_events_from_Twitter
198 - Elise Jing , Yong-Yeol Ahn 2021
The COVID-19 pandemic is a global crisis that has been testing every society and exposing the critical role of local politics in crisis response. In the United States, there has been a strong partisan divide which resulted in polarization of individu al behaviors and divergent policy adoption across regions. Here, to better understand such divide, we characterize and compare the pandemic narratives of the Democratic and Republican politicians on social media using novel computational methods including computational framing analysis and semantic role analysis. By analyzing tweets from the politicians in the U.S., including the president, members of Congress, and state governors, we systematically uncover the contrasting narratives in terms of topics, frames, and agents that shape their narratives. We found that the Democrats narrative tends to be more concerned with the pandemic as well as financial and social support, while the Republicans discuss more about other political entities such as China. By using contrasting framing and semantic roles, the Democrats emphasize the governments role in responding to the pandemic, and the Republicans emphasize the roles of individuals and support for small businesses. Both parties narratives also include shout-outs to their followers and blaming of the other party. Our findings concretely expose the gaps in the elusive consensus between the two parties. Our methodologies may be applied to computationally study narratives in various domains.
Social scientists and psychologists take interest in understanding how people express emotions and sentiments when dealing with catastrophic events such as natural disasters, political unrest, and terrorism. The COVID-19 pandemic is a catastrophic ev ent that has raised a number of psychological issues such as depression given abrupt social changes and lack of employment. Advancements of deep learning-based language models have been promising for sentiment analysis with data from social networks such as Twitter. Given the situation with COVID-19 pandemic, different countries had different peaks where the rise and fall of new cases affected lock-downs which directly affected the economy and employment. During the rise of COVID-19 cases with stricter lock-downs, people have been expressing their sentiments in social media. This can provide a deep understanding of human psychology during catastrophic events. In this paper, we present a framework that employs deep learning-based language models via long short-term memory (LSTM) recurrent neural networks for sentiment analysis during the rise of novel COVID-19 cases in India. The framework features LSTM language model with a global vector embedding and state-of-art BERT language model. We review the sentiments expressed for selective months in 2020 which covers the first major peak of novel cases in India. Our framework utilises multi-label sentiment classification where more than one sentiment can be expressed at once. Our results indicate that the majority of the tweets have been positive with high levels of optimism during the rise of the novel COVID-19 cases and the number of tweets significantly lowered towards the peak. The predictions generally indicate that although the majority have been optimistic, a significant group of population has been annoyed towards the way the pandemic was handled by the authorities.
In this paper, we describe the approach that we employed to address the task of Entity Recognition over Wet Lab Protocols -- a shared task in EMNLP WNUT-2020 Workshop. Our approach is composed of two phases. In the first phase, we experiment with var ious contextualised word embeddings (like Flair, BERT-based) and a BiLSTM-CRF model to arrive at the best-performing architecture. In the second phase, we create an ensemble composed of eleven BiLSTM-CRF models. The individual models are trained on random train-validation splits of the complete dataset. Here, we also experiment with different output merging schemes, including Majority Voting and Structured Learning Ensembling (SLE). Our final submission achieved a micro F1-score of 0.8175 and 0.7757 for the partial and exact match of the entity spans, respectively. We were ranked first and second, in terms of partial and exact match, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا