ﻻ يوجد ملخص باللغة العربية
This work introduces a novel approach to study properties of positive equilibria of a chemical reaction network $mathscr{N}$ endowed with Hill-type kinetics $K$, called a Hill-type kinetic (HTK) system $left(mathscr{N},Kright)$, including their multiplicity and concentration robustness in a species. We associate a unique positive linear combination of power-law kinetic systems called poly-PL kinetic (PYK) system $left( {mathscr{N},{K_text{PY}}} right)$ to the given HTK system. The associated system has the key property that its equilibria sets coincide with those of the Hill-type system, i.e., ${E_ + }left( {mathscr{N},K} right) = {E_ + }left( {mathscr{N},{K_text{PY}}} right)$ and ${Z_ + }left( {mathscr{N},K} right) = {Z_ + }left( {mathscr{N},{K_text{PY}}} right)$. This allows us to identify two novel subsets of the Hill-type kinetics, called PL-equilibrated and PL-complex balanced kinetics, to which recent results on absolute concentration robustness (ACR) of species and complex balancing at positive equilibria of power-law (PL) kinetic systems can be applied. Our main results also include the Shinar-Feinberg ACR Theorem for PL-equilibrated HT-RDK systems (i.e., subset of complex factorizable HTK systems), which establishes a foundation for the analysis of ACR in HTK systems, and the extension of the results of Muller and Regensburger on generalized mass action systems to PL-complex balanced HT-RDK systems. In addition, we derive the theory of balanced concentration robustness (BCR) in an analogous manner to ACR for PL-equilibrated systems. Finally, we provide further extensions of our results to a more general class of kinetics, which includes quotients of poly-PL functions.
We present conditions which guarantee a parametrization of the set of positive equilibria of a generalized mass-action system. Our main results state that (i) if the underlying generalized chemical reaction network has an effective deficiency of zero
The leading-order approximation to a Filippov system $f$ about a generic boundary equilibrium $x^*$ is a system $F$ that is affine one side of the boundary and constant on the other side. We prove $x^*$ is exponentially stable for $f$ if and only if
A complex balanced kinetic system is absolutely complex balanced (ACB) if every positive equilibrium is complex balanced. Two results on absolute complex balancing were foundational for modern chemical reaction network theory (CRNT): in 1972, M. Fein
This paper studies chemical kinetic systems which decompose into weakly reversible complex factorizable (CF) systems. Among power law kinetic systems, CF systems (denoted as PL-RDK systems) are those where branching reactions of a reactant complex ha
The fundamental decomposition of a chemical reaction network (also called its $mathscr{F}$-decomposition) is the set of subnetworks generated by the partition of its set of reactions into the fundamental classes introduced by Ji and Feinberg in 2011