ترغب بنشر مسار تعليمي؟ اضغط هنا

Hardy Spaces for a Class of Singular Domains

195   0   0.0 ( 0 )
 نشر من قبل Purvi Gupta
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We set a framework for the study of Hardy spaces inherited by complements of analytic hypersurfaces in domains with a prior Hardy space structure. The inherited structure is a filtration, various aspects of which are studied in specific settings. For punctured planar domains, we prove a generalization of a famous rigidity lemma of Kerzman and Stein. A stabilization phenomenon is observed for egg domains. Finally, using proper holomorphic maps, we derive a filtration of Hardy spaces for certain power-generalized Hartogs triangles, although these domains fall outside the scope of the original framework.



قيم البحث

اقرأ أيضاً

We completely characterize the boundedness of the Volterra type integration operators $J_b$ acting from the weighted Bergman spaces $A^p_alpha$ to the Hardy spaces $H^q$ of the unit ball of $mathbb{C}^n$ for all $0<p,q<infty$. A partial solution to t he case $n=1$ was previously obtained by Z. Wu in cite{Wu}. We solve the cases left open there and extend all the results to the setting of arbitrary complex dimension $n$. Our tools involve area methods from harmonic analysis, Carleson measures and Kahane-Khinchine type inequalities, factorization tricks for tent spaces of sequences, as well as techniques and integral estimates related to Hardy and Bergman spaces.
Suppose $ngeq 3$ and let $B$ be the open unit ball in $mathbb{R}^n$. Let $varphi: Bto B$ be a $C^2$ map whose Jacobian does not change sign, and let $psi$ be a $C^2$ function on $B$. We characterize bounded weighted composition operators $W_{varphi,p si}$ acting on harmonic Hardy spaces $h^p(B)$. In addition, we compute the operator norm of $W_{varphi,psi}$ on $h^p(B)$ when $varphi$ is a Mobius transformation of $B$.
145 - Guangfu Cao , Li He 2021
For any real $beta$ let $H^2_beta$ be the Hardy-Sobolev space on the unit disk $D$. $H^2_beta$ is a reproducing kernel Hilbert space and its reproducing kernel is bounded when $beta>1/2$. In this paper, we study composition operators $C_varphi$ on $H ^2_beta$ for $1/2<beta<1$. Our main result is that, for a non-constant analytic function $varphi:DtoD$, the operator $C_{varphi }$ has dense range in $H_{beta }^{2}$ if and only if the polynomials are dense in a certain Dirichlet space of the domain $varphi(D)$. It follows that if the range of $C_{varphi }$ is dense in $H_{beta }^{2}$, then $varphi $ is a weak-star generator of $H^{infty}$. Note that this conclusion is false for the classical Dirichlet space $mathfrak{D}$. We also characterize Fredholm composition operators on $H^{2}_{beta }$.
We establish that the Volterra-type integral operator $J_b$ on the Hardy spaces $H^p$ of the unit ball $mathbb{B}_n$ exhibits a rather strong rigid behavior. More precisely, we show that the compactness, strict singularity and $ell^p$-singularity of $J_b$ are equivalent on $H^p$ for any $1 le p < infty$. Moreover, we show that the operator $J_b$ acting on $H^p$ cannot fix an isomorphic copy of $ell^2$ when $p e 2.$
157 - Daniel H. Luecking 2014
A sequence which is a finite union of interpolating sequences for $H^infty$ have turned out to be especially important in the study of Bergman spaces. The Blaschke products $B(z)$ with such zero sequences have been shown to be exactly those such that the multiplication $f mapsto fB$ defines an operator with closed range on the Bergman space. Similarly, they are exactly those Blaschke products that boundedly divide functions in the Bergman space which vanish on their zero sequence. There are several characterizations of these sequences, and here we add two more to those already known. We also provide a particularly simple new proof of one of the known characterizations. One of the new characterizations is that they are interpolating sequences for a more general interpolation problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا