ترغب بنشر مسار تعليمي؟ اضغط هنا

Corrosion Resistance of Sulfur-Selenium Alloy Coatings

674   0   0.0 ( 0 )
 نشر من قبل Muhammad Rahman
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sandhya Susarla




اسأل ChatGPT حول البحث

Despite decades of research, metallic corrosion remains a long-standing challenge in many engineering applications. Specifically, designing a material that can resist corrosion both in abiotic as well as biotic environments remains elusive. Here we design a lightweight sulfur-selenium (S-Se) alloy with high stiffness and ductility that can serve as a universal corrosion-resistant coating with protection efficiency of ~99.9% for steel in a wide range of diverse environments. S-Se coated mild steel shows a corrosion rate that is 6-7 orders of magnitude lower than bare metal in abiotic (simulated seawater and sodium sulfate solution) and biotic (sulfate-reducing bacterial medium) environments. The coating is strongly adhesive and mechanically robust. We attribute the high corrosion resistance of the alloy in diverse environments to its semi-crystalline, non-porous, anti-microbial, and viscoelastic nature with superior mechanical performance, enabling it to successfully block a variety of diffusing species.

قيم البحث

اقرأ أيضاً

A variety of polymeric surfaces, such as anti-corrosion coatings and polymer-modified asphalts, are prone to blistering when exposed to moisture and air. As water and oxygen diffuse through the material, dissolved species are produced, which generate osmotic pressure that deforms and debonds the coating.These mechanisms are experimentally well-supported; however, comprehensive macroscopic models capable of predicting the formation osmotic blisters, without extensive data-fitting, is scant. Here, we develop a general mathematical theory of blistering and apply it to the failure of anti-corrosion coatings on carbon steel. The model is able to predict the irreversible, nonlinear blister growth dynamics, which eventually reaches a stable state, ruptures, or undergoes runaway delamination, depending on the mechanical and adhesion properties of the coating. For runaway delamination, the theory predicts a critical delamination length, beyond which unstable corrosion-driven growth occurs. The model is able to fit multiple sets of blister growth data with no fitting parameters. Corrosion experiments are also performed to observe undercoat rusting on carbon steel, which yielded trends comparable with model predictions. The theory is used to define three dimensionless numbers which can be used for engineering design of elastic coatings capable of resisting visible deformation, rupture, and delamination.
The mechanism of AgCl-induced stress corrosion cracking of Ti-6246 was examined at SI{500}{megapascal} and SI{380}{celsius} for SI{24}{hour} exposures. SEM and STEM-EDX examination of a FIB-sectioned blister and crack showed that metallic Ag was form ed and migrated along the crack. TEM analysis also revealed the presence of ce{SnO2} and ce{Al2O3} corrosion products mixed into ce{TiO2}. The fracture surface has a transgranular nature with a brittle appearance in the primary $alpha$ phase. Long, straight and non-interacting dislocations were observed in a cleavage-fractured primary $alpha$ grain, with basal and pyramidal traces. This is consistent with a dislocation emission view of the the cracking mechanism.
Magnesium and its alloys are ideal for biodegradable implants due to their biocompatibility and their low-stress shielding. However, they can corrode too rapidly in the biological environment. The objective of this research was to develop heat treatm ents to slow the corrosion of high purified magnesium and AZ31 alloy in simulated body fluid at 37{deg}C. Heat treatments were performed at different temperatures and times. Hydrogen evolution, weight loss, PDP, and EIS methods were used to measure the corrosion rates. Results show that heat treating can increase the corrosion resistance of HP-Mg by 2x and AZ31 by 10x.
Magnesium alloys have been considered to be favorable biodegradable metallic materials used in orthopedic and cardiovascular applications. We introduce NH+2 to the AZ31 Mg alloy surface by ion implantation at the energy of 50 KeV with doses ranging f rom 1e16 ions/cm2 to 1e17 ions/cm2 to improve its corrosion resistance and biocompatibility. Surface morphology, mechanical properties, corrosion behavior and biocompatibility are studied in the experiments. The analysis confirms that the modified surface with smoothness and hydrophobicity significantly improves the corrosion resistance and biocompatibility while maintaining the mechanical property of the alloy.
Magnesium alloys have been considered to be potential biocompatible metallic materials. Further improvement on the anti-corrosion is expected to make this type of materials more suitable for biomedical applications in the fields of orthopedics, cardi ovascular surgery and others. In this paper, we introduce a method of carboxyl ion (COOH+) implantation to reduce the degradation of ZK60 Mg alloy and improve its functionality in physiological environment. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) experiments show the formation of a smooth layer containing carbaxylic group, carbonate, metal oxides and hydroxides on the ion implanted alloy surface. Corrosion experiments and in vitro cytotoxicity tests demonstrate that the ion implantation treatment can both reduce the corrosion rate and improve the biocompatibility of the alloy. The promising results indicate that organic functional group ion implantation may be a practical method of improving the biological and corrosion properties of magnesium alloys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا