ﻻ يوجد ملخص باللغة العربية
We observe and analyze formation, decay, and subsequent regeneration of ring-shaped clusters of (2+1)-dimensional spatial solitons (filaments) in a medium with the cubic-quintic (focusing-defocusing) self-interaction and strong dissipative nonlinearity. The cluster of filaments, that remains stable over ~17.5 Rayleigh lengths, is produced by the azimuthal modulational instability from a parent ring-shaped beam with embedded vorticity l = 1. In the course of still longer propagation, the stability of the soliton cluster is lost under the action of nonlinear losses. The annular cluster is then spontaneously regenerated due to power transfer from the reservoir provided by the unsplit part of the parent vortex ring. A (secondary) interval of the robust propagation of the regenerated cluster is identified. The experiments use a laser beam (at wavelength 800 nm), built of pulses with temporal duration 150 fs, at the repetition rate of 1 kHz, propagating in a cell filled by liquid carbon disulfide. Numerical calculations, based on a modified nonlinear Schrodinger equation which includes the cubic-quintic refractive terms and nonlinear losses, provide results in close agreement with the experimental findings.
We construct families of fundamental, dipole, and tripole solitons in the fractional Schr{o}dinger equation (FSE) incorporating self-focusing cubic and defocusing quintic terms modulated by factors $cos ^{2}x$ and $sin^{2}x$, respectively. While the
We present eight types of spatial optical solitons which are possible in a model of a planar waveguide that includes a dual-channel trapping structure and competing (cubic-quintic) nonlinearity. Among the families of trapped beams are symmetric and a
It is well known that the two-dimensional (2D) nonlinear Schrodinger equation (NLSE) with the cubic-quintic (CQ) nonlinearity supports a family of stable fundamental solitons, as well as solitary vortices (alias vortex rings), which are stable for su
We study the properties of a soliton crystal, an bound state of several optical pulses that propagate with a fixed temporal separation through the optical fibres of the proposed approach for generation of optical frequency combs (OFC) for astronomica
The generation of high-intensity optical fields from harmonic-wave photons, interacting via a cross-phase modulation with dark solitons both propagating in a Kerr nonlinear medium, is examined. The focus is on a pump consisting of time-entangled dark